• 제목/요약/키워드: Disturbance Force Observer

검색결과 81건 처리시간 0.027초

외란 관측기에 기반을 둔 힘 추정기 설계 (Design of Force Estimator Based on Disturbance Observer)

  • 엄광식;서일홍
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권9호
    • /
    • pp.1140-1146
    • /
    • 1999
  • In this paper, a force estimation method is proposed for force control without force sensor. For this , a disturbance observer is applied to each joint of an {{{{ { n}_{ } }}}} degrees of freedom manipulator to obtain a simple equivalent robot dynamics(SERD) being represented as an n independent double integrator system. To estimate the output of disturbance observer due to internal torque, the disturbance observer output estimator(DOOE) is designed, where uncertain parameters of the robot manipulator are adjusted by the gradient method to minimize the performance index which is defined as the quadratic form of the error signal between the output of disturbance observer and that of DOOE. when the external force is exerted, the external force is estimated by the difference between the output of disturbance observer and DOOE, since output of disturbance observer includes the external torque signal as well as the internal torque estimated by the output of DOOE. And then, a force controller is designed for force feedback control employing the estimated force signal. To verify the effectiveness of the proposed force estimation method, several numerical examples and experimental results are illustrated for the 2-axis direct drive robot manipulator.

  • PDF

Observer Based Sensorless Rorce Control of Robot Manipulator

  • Suh, Il-Hong;Eom, Kwang-Sik;Lee, Chang-Eun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.803-806
    • /
    • 1997
  • In this paper, a force estimation method is proposed for the sensorless force control. For this, a disturbance observer is applied to each joint of an n degrees of freedom manipulator to obtain a simple equivalent robot dynamics(SERD) being represented as an n independent double integrator system. To estimate the output of disturbance observer in the absence of external force, the observer estimator is designed, where the uncertain parameters of the robot manipulator are adjusted by gradient method to minimize the output between the disturbance observer and the observer estimator. When the external force is exerted, the external force is estimated using the difference between the output of disturbance observer which include the external torque signal and that of observer estimator. And then, a force controller is designed for force feedback control employing the estimated force signal. To verify the effectiveness of the proposed force estimation method, several numerical examples are illustrated for the 2-axis planar type robot manipulator.

  • PDF

외란 오브저버에의한 작업좌표공간에서의 다이렉트 드라이브 로보트의 위치와 힘의 하이브리드 제어 (Hybrid Position/Force Control of Direct Drive Robots by Disturbance Observer in Task Coordinate Space.)

  • 신정호;코마다 사토시;이시다 무네아키;호리 타카마사
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 A
    • /
    • pp.411-413
    • /
    • 1992
  • This paper proposes a simple and high performance hybrid position/force control of robots based on disturbance compensation by using the disturbance observer in task coordinate space. The disturbance observer linealizes system of robot manipulators in task coordinate space and realizes acceleration control. To realize the strict acceleration control, the disturbance observer whose input is a position signal by simple computation, works as if it were a disturbance detector. The inverse kinematics can be simplified, because the disturbance observer in task coordinate space compensates not only the disturbance but also the error due to the simplification of the inverse kinematics. The new strategy is applied to a three-degrees-of freedom direct drive robot. The robust and simple hybrid position/force control is realized experimentally.

  • PDF

한 쌍의 6축 전기유압 매니퓰레이터의 힘제어 (Force Control of one pair of 6-Link Electro-Hydraulic Manipulators)

  • 안경관;조용래;양순용;이병룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.353-356
    • /
    • 1997
  • Hydraulically driven manipulators are superior to electrically driven ones in the power density and electrical insulation. But an electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and this parameter fluctuations are greater than those of electrically driven manipulator. So this is relatively difficult to realize not only stable contact work but also accurate force control for the autonomous field task such as the maintenance task of high voltage active electric line or the automatic excavation task by hydraulic excavator. In this report, we propose robust force control algorithm, which can be applied to there real field task such as the construction field, nuclear plant and so on. Proposed force controller has the same structure as that of disturbance observe for position control. The difference between force and position disturbance observer is that the input and output of disturbance observer are forces in the case force disturbance observer and the plant varies much compared to the case of position control. In the design of force disturbance observer, generalized plant is derived and the stabilized filter is designed by H infinity control theory to ensure the robuts t stability even though the stiffness of environment changes from sponge to steel, and the contact surface also changes from flat to round shape. Experimental results show that highly robust force tracking by a 6-link electro-hydraulic manipulator could be achieved under various environment conditions.

  • PDF

함수 연결 신경망과 외란 관측기를 이용한 힘 추정기 설계 및 로봇 매니퓰레이터에의 응용 (Design of a Force Estimator using an FLANN with a Disturbance Observer and Application to a Robot Manipulator)

  • 채원범;안현식;김도현
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(5)
    • /
    • pp.27-30
    • /
    • 2000
  • In this paper, we propose a new approach to determination of environment forces acting on a rigid body. To estimate the output of disturbance observer due to internal torque, the disturbance observer output estimator using functional link neural network (FLANN) is designed. It is also shown by simulation results that the precise estimation of contact force is achieved for a 2-link SCARA robot performing position/force control.

  • PDF

질량추정과 외란추력 관측기를 이용한 자동피킹 시스템 구동용 선형 유도모터의 강인제어 기법 (A Robust Control Scheme of Linear Induction Machine for Automatic Picking System Using Mass Estimation and Disturbance Force Observer)

  • 최정현;유동상;김경화
    • 조명전기설비학회논문지
    • /
    • 제27권4호
    • /
    • pp.62-72
    • /
    • 2013
  • To operate an automatic picking system in distribution center with high precision and high dynamics, this paper presents a robust control scheme of a linear induction motor (LIM) using the mass estimation and disturbance force observer. The force disturbance which gives a direct influence on the control performance of LIM is estimated in real-time through the disturbance observer and compensated by a feedforward manner. To get a satisfactory performance even under the mass variation by reducing the disturbance force due to the mismatched mass during the speed transient such as the acceleration and deceleration periods, a mass estimation algorithm is proposed. A Simulink model for LIM is developed and the validity of the proposed scheme is verified through the comparative simulation studies using Matlab - Simulink.

공압 매니퓰레이터의 강인 힘제어 (Robust Force Control of Pneumatic Manipulator)

  • 박정규;노리츠구토시로
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.540-552
    • /
    • 1996
  • In this paper, a compensation method of disturbance using a disturbance observer is proposed for a force control of a pneumatic robot manipulator. The generated torque by a pneumatic actuator can be estimated based on the pressure signals. The inner torque control system is constructed by feeding back the generated torque to improve the dynamic characteristics of the actuator. In order to reduce the influence of disturbances comprising friction torque, parameter variations of plant and environment and so on, the reaction torque control system is constructed with a disturbance observer which estimates the disturbances based on the reference input to the inner torque control system and the reaction torque sensed with a forced sensor. From some simulations and experiments, it is confirmed that the proposed control system is effective to improve the robustness for the friction torque and the parameter change of object in the force control of a pneumatic robot manupulator.

외란 관측기를 이용한 이동 로봇의 슬립 제어 (Anti-Slip Control for Wheeled Robot Based on Disturbance Observer)

  • 권선구;허욱열;김진환;김학일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.50-52
    • /
    • 2004
  • Mobility of an indoor wheeled robot is affected by adhesion force that is related to various floor conditions. When the adhesion force between driving wheels and the floor decreases suddenly, the robot has slip state. First of all, this paper models adhesion characteristics and slip in wheeled robot. Secondly, the paper proposes estimation method of adhesion force coefficient according to slip velocity. In oder to overcome this slip problem, optimal slip velocity must be decided for stable movement of wheeled robot. The paper proposes an anti-slip control system based on an ordinary disturbance observer, that is, the anti-slip control is achieved by reducing the driving torque enough to give maximum adhesion force coefficient. These procedure is implemented using a Pioneer 2-DXE parameter.

  • PDF

외란관측기를 이용한 CNC 공작기계의 절삭력 제어 (Cutting force control of a CNC machine using disturbance observer)

  • 손주형;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.660-663
    • /
    • 1997
  • In recent manufacturing process, the increase of productivity is required by reducing machining time with the increase of cutting force. However, the excessive increase of cutting force can cause tool breakage, and have a bad effect on both the manufacturing machine and the workpiece. Thus, it is necessary to estimate and control cutting force in real time during the process. In this study, use of disturbance observer is proposed for the indirect cutting force estimation. The estimated cutting force is used for the real time control of feedrate, making the actual cutting force follow the reference force command. Since the suggested method does not need an expensive sensor like a dynamometer, the method is expected to be used practically. By reducing the machining time resulting from making the actual cutting force follow the reference force, the increase of productivity are also expected, and the quality of cutting surface has been improved due to the adjusted feedrate. Besides, an actual constant cutting force guarantees the prevention of tool breakage. To show the effectiveness of the suggested cutting force control method, an experimental setup has been made without the force sensor, applied to several workpieces. Experiments show that the suggested method is superior to the conventional method operated by constant feedrate.

  • PDF

전기 유압 서보 시스템의 비선형 외란 관측기 기반피드백 선형화 제어 (Disturbance Observer based Feedback Linearization Control for Electro-Hydraulic Servo Systems)

  • 원대희;김원희;정정주
    • 전기학회논문지
    • /
    • 제64권2호
    • /
    • pp.297-303
    • /
    • 2015
  • We propose a disturbance observer(DOB) based feedback linearization control to improve position tracking performance in the presence of disturbance. The proposed method consists of a disturbance observer and a feedback linearization controller. The disturbance observer is designed to estimate the load force disturbance in electro-hydraulic systems. An auxiliary state variable is proposed in order to avoid amplification of the measurement noises in the disturbance observer. Using the estimated disturbance enables the Electro-hydraulic servo systems(EHS) dynamics to be changed into feedback linearization from. In order to compensate for the disturbance and to track the desired position, the feedback linearization based controller is proposed. The proposed method has a simple structure which can easily be implemented in practice. As a result, the proposed method improves the position tracking performance in the presence of disturbance. Its performance is validated via simulations.