• Title/Summary/Keyword: Disturbance Compensation

Search Result 269, Processing Time 0.024 seconds

Improvement of Speed Control Performance using Acceleration Feedforward and Incrtia Identification for the Induction Motor (관성능률 추정과 가속도 전향보상을 이용한 유도전동기의 속도제어 성능향상)

  • 이재옥;김상훈
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.90-97
    • /
    • 2001
  • In this paper, a novel speed control strategy using an acceleration feedforward compensation by the estimation of the system inertia is proposed. With the proposed method, the enhanced speed control performance can be achieved and the speed response against the disturbance torque can be improved for the vector-controled induction motor drive systems in which the bandwidth of the speed controller cannot be made large enough. The simulation and experimental results for induction motor drive systems confirm the validity of the proposed strategy.

  • PDF

Design and Analysis of an Improved Decoupling Feedforward Controller for Speed Control of SynRM (초고속 전동기 속도제어를 위한 개선된 비간섭 피드-포워드 제어기 설계 및 해석)

  • Oh, Sung-Up;Kim, In-Soo;Seong, Se-Jin;Choi, Jae-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.864-867
    • /
    • 2003
  • In this study, a controller which has a feedforward controller and two additional PI integrators was designed. But if a controller is used by only the integration of a feedforward controller and two additional PI integrators, the capability of a controller will decrease because the decoupling terms of current is feedback as the disturbance. Therefore the feedforward method with the decoupling compensation was proposed. The two additional PI integrators were replaced by two decoupling terms to simplify the calculation. The simulation and experimental using SynRM driving system were performed to verify the design of a improved decoupling feedforward controller.

  • PDF

Robust Internal-loop Compensation of Pump Velocity Controller for Precise Force Control of an Electro-hydrostatic Actuator (EHA의 정밀 힘제어를 위한 펌프 속도 제어기의 강인 내부루프 보상)

  • Kim, Jong-Hyeok;Hong, Yeh-Sun
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.55-60
    • /
    • 2018
  • Force-controlled electro-hydrostatic actuators have to exhibit high backdrivability, to quickly compensate for force control errors caused by externally disturbed rod movement. To obtain high backdrivability, the servomotor for driving the hydraulic pump, should rotate exactly to such a revolution to compensate for force control errors, compressing or decompressing cylinder chambers. In this study, we proposed a modified velocity control structure, including a robust internal-loop compensator (RIC)-based velocity controller, for the servomotor to improve backdrivability of a force-controlled EHA. Performance improvement was confirmed experimentally, wherein sinusoidal velocity disturbance was applied to the force-controlled EHA, with constant reference input. Its dynamic force control errors reduced effectively, with the proposed control scheme, compared to test results with a conventional motordriver, for motor velocity control.

A Comparative Study of Acidemia-induced Hyperkalemia and Hyperkalemia-induced Acidemia (산혈증 유발 고칼륨혈증과 고칼륨혈증 유발 산혈증의 비교 연구)

  • Yoon, Jun-Oh;Park, Choon-Ok;Hwang, Sang-Ik;Kim, Chong-Whan;Kim, Woo-Gyeum
    • The Korean Journal of Physiology
    • /
    • v.24 no.1
    • /
    • pp.123-129
    • /
    • 1990
  • A comparative study of acid-base balance has been made between acidemia-induced hyperkalemia and hyperkalemia-induced acidemia. A group of rabbits was infused 0.1 N hydrochloric acid solution and metabolic acidosis was induced. Another group was administered 20 mM potassium chloride solution and hyperkalemia was induced. The third group was infused 0.1 N hydrochloric acid and 20 mM potassium chloride solution, simultaneously. Acid-base data and plasma potassium ion concentration were monitored every thirty minutes in these three groups of rabbits. Following results were obtained: 1 ) Along with the infusion of hydrochloric acid, acute metabolic acidosis was induced in the rabbits. Plasma bicarbonate ion concentration decreased primarily in this group. As a respiratory compensation, there was a tendency of reduction of arterial $Pco_{2}$. The alteration of data became larger along with the amount of administration and the time elapsed. However, hyperkalemia was not so severe compared with the second group. 2) In potassium chloride infused group, plasma potassium ion concentration increased along with the time elapsed and the amount of infusion. And the alteration of acid-base data was parrallel to the level of potassium ion concentration, above all depression of pH was prominent. 3) Above data suggest that when acute metabolic acidosis was induced, exchange of intracellular potassium ion with extracellular hydrogen ion seems significant for the regulation of extracellular acid-base balance. And when hyperkalemia was induced with the infusion of potassium chloride solution, the exchange of intracellular hydrogen ion with extracellular potassium ion also seems significant for the regulation of extracellular potassium balance. 4) In the group of rabbits infused hydrochloric acid and potassium simultaneously, disturbances of acid-base balance and potassium balance were much more severe than two other groups. In these mixed disturbances, the process of compensatory mechanism might be inhibited and one disturbance might aggregate each other. 5) Through above data it has been postulated that in acid-base disturbance potassium balance can be sacrificed as a compensatory mechanism, and vice versa in disturbance of potassium balance. And our data also suggest that hydrogen ion and potassium ion are compensatory pair, one another.

  • PDF

Design of adaptive fuzzy controller to overcome a slope of a mobile robot for driving (모바일 로봇의 경사면 극복 주행 제어를 위한 적응 퍼지 제어기 설계)

  • Park, Jong-Ho;Baek, Seung-Jun;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6034-6039
    • /
    • 2012
  • In this paper, this may appear to exacerbate it met slopes of the mobile robot moves to overcome this by driving can occur if the mobile robot system has its own sleep problems driving progress in until you hit the target and solvedriving straight driving safer model for adaptive fuzzy control method of mobile robot based control algorithm is proposed. First, we propose a model based adaptive fuzzy controller, if possible, the dynamics model of the mobile robot, including model-based controller is designed to determine if you can check the condition of the mobile robot climbing and driving the mobile robot to overcome the slope and the to overcome driving control. Enough considering the ground friction forces and ensure the stability of the mobile robot system and the disturbance compensation, etc. In this case, the controller design will be possible. In addition, the nonlinear model, the dynamic characteristics of the mobile robot control method of adaptive fuzzy control techniques in the design that you want to fully reflect Non-holonomic system of mobile robots and solve sleep problems, and will be useful enough, it was verified through computer simulations.

Experimental Evaluation of Levitation and Imbalance Compensation for the Magnetic Bearing System Using Discrete Time Q-Parameterization Control (이산시간 Q 매개변수화 제어를 이용한 자기축수 시스템에 대한 부상과 불평형보정의 실험적 평가)

  • ;Fumio Matsumura
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.964-973
    • /
    • 1998
  • In this paper we propose a levitation and imbalance compensation controller design methodology of magnetic bearing system. In order to achieve levitation and elimination of unbalance vibartion in some operation speed we use the discrete-time Q-parameterization control. When rotor speed p = 0 there are no rotor unbalance, with frequency equals to the rotational speed. So in order to make levitatiom we choose the Q-parameterization controller free parameter Q such that the controller has poles on the unit circle at z = 1. However, when rotor speed p $\neq$ 0 there exist sinusoidal disturbance forces, with frequency equals to the rotational speed. So in order to achieve asymptotic rejection of these disturbance forces, the Q-parameterization controller free parameter Q is chosen such that the controller has poles on the unit circle at z = $exp^{ipTs}$ for a certain speed of rotation p ( $T_s$ is the sampling period). First, we introduce the experimental setup employed in this research. Second, we give a mathematical model for the magnetic bearing in difference equation form. Third, we explain the proposed discrete-time Q-parameterization controller design methodology. The controller free parameter Q is assumed to be a proper stable transfer function. Fourth, we show that the controller free parameter which satisfies the design objectives can be obtained by simply solving a set of linear equations rather than solving a complicated optimization problem. Finally, several simulation and experimental results are obtained to evaluate the proposed controller. The results obtained show the effectiveness of the proposed controller in eliminating the unbalance vibrations at the design speed of rotation.

  • PDF

The Change of Postural Sway of Diabetic Neuropathy by Galvanic Vestibular Stimulation (평류전정자극에 의한 당뇨성 신경증 환자의 자세동요 변화)

  • Hwang, Tae-Yeun;Kim, Young-Nam;Kim, Tae-Youl;Park, Jang-Sung;Yoon, Se-Won
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.3 no.1
    • /
    • pp.71-84
    • /
    • 2005
  • This study had performed with purposes to analyze the influence of the change of vestibular sens, visual and proprioceptive sense to the postural sway, so as to supply the necessary clinical materials through developing the physical therapeutic interventions and assessment format for the diabetic neuropathy patients. The sample consisted of fifteen diabetic neuropathy patients with sensory disorder in their lower limbs and fifteen age-matched normal control group. Then the effect of the GVS and the visual cue open and closed to the postural sway were measured by CoP. The summary of the comparison results were obtained below. In the comparison of diabetes neuropathy patients group and age matched normal control group, however diabetes neuropathy patients group had a decrease in superficial tactile sense(p<.001) and nerve conduction velocity(p<.001), they were able to control the posture and walk. So it is, diabetes neuropaty patients had more disturbance compared with AMC group on at a hard surface, particularly in the visual cue open(p<.001) and visual cue closed(p<.01). Moreover, since diabetes neuropathy patients group had more differences in visual cue open and closed(p<. 01), GVS(p<.01), it meant that they're affected largely by vestibular sense, visual sense. In addition, since there're the largest change in doubled sense disturbance such as visual cue open and closed under GVS, it meant that compensation of other senses were quite important for the diabetes neuropathy patients' postural control. In the conclusion, diabetes neuropathy patients who decrease or lose the somatosensory system, sensory training of visual and vestibular system are likely to be quite essential to control the posture and balance.

  • PDF

A Study on the Sliding Mode Control of PMLSM using the Slate Observer (상태관측기에 의한 영구자석 선형동기전동기의 슬라이딩모드제어에 관한 연구)

  • 황영민;신동률;최거승;조윤현;우정인
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.71-80
    • /
    • 2002
  • According to the rapid growth of high speed and precise industry, the application of synchronous motor has been increased. In the application fields, these fast dynamic response is of prime importance. In particular, since the PMLSM(Permanent Magnet Linear Synchronous Motor) has characteristics of high speed, high thrust, it has been used in high-performance servo drive. From these reasons, it is recently used for high precise position control, and machine tool. In this paper, a study of the sliding mode with VSS (Variable Structure System) design for a PMLSM is presented. For fast and precise motion control of PMLSM, the compensation of disturbance and parameter variation is necessary. Hence we eliminate the reaching phase use of VSS that is changed to switching function and vector control using the state observer. And we proposed to sliding mode control algorithm so that realize fast response without overshoot, disturbance and parameter variation.

Robot Manipulator Visual Servoing via Kalman Filter- Optimized Extreme Learning Machine and Fuzzy Logic

  • Zhou, Zhiyu;Hu, Yanjun;Ji, Jiangfei;Wang, Yaming;Zhu, Zefei;Yang, Donghe;Chen, Ji
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2529-2551
    • /
    • 2022
  • Visual servoing (VS) based on the Kalman filter (KF) algorithm, as in the case of KF-based image-based visual servoing (IBVS) systems, suffers from three problems in uncalibrated environments: the perturbation noises of the robot system, error of noise statistics, and slow convergence. To solve these three problems, we use an IBVS based on KF, African vultures optimization algorithm enhanced extreme learning machine (AVOA-ELM), and fuzzy logic (FL) in this paper. Firstly, KF online estimation of the Jacobian matrix. We propose an AVOA-ELM error compensation model to compensate for the sub-optimal estimation of the KF to solve the problems of disturbance noises and noise statistics error. Next, an FL controller is designed for gain adaptation. This approach addresses the problem of the slow convergence of the IBVS system with the KF. Then, we propose a visual servoing scheme combining FL and KF-AVOA-ELM (FL-KF-AVOA-ELM). Finally, we verify the algorithm on the 6-DOF robotic manipulator PUMA 560. Compared with the existing methods, our algorithm can solve the three problems mentioned above without camera parameters, robot kinematics model, and target depth information. We also compared the proposed method with other KF-based IBVS methods under different disturbance noise environments. And the proposed method achieves the best results under the three evaluation metrics.

Performance Analysis of the Active SAS Autofocus Processing for UUV Trajectory Disturbances Compensation (수중무인체 궤적교란 보상을 위한 능동 SAS 자동초점처리 성능 분석)

  • Kim, Boo-il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.215-222
    • /
    • 2017
  • An active synthetic aperture sonar mounted on small UUV is generated various trajectory disturbances in the traveling path by the influence of external underwater environments. That is the phase mismatch occurs in the synthetic aperture processing of the signals reflected from seabed objects and fetches the detection performance decreases. In this paper, we compensated deteriorated images by the active SAS autofocus processing using DPC and analyzed the effects of detection performance when the periodic trajectory disturbances occur in the side direction at a constant velocity and straight movement of UUV. Through simulations, the deteriorated images according to the periodic disturbance magnitudes and period variations in the platform were compensated using difference phases processing of the overlapping displaced phase centers on the adjacent transmitted ping signals, and we conformed the improved performance characteristics of azimuth resolution and detection images at 3dB reference point.