• Title/Summary/Keyword: District cooling system

Search Result 70, Processing Time 0.028 seconds

A Study on the Cooling Load Generation for Efficient Energy Management (냉방부하 수요 창출을 통한 효율적 에너지 관리방안 연구)

  • Woo, Nam-Sub;Kim, Yong-Ki;Lee, Tae-Won
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1007-1012
    • /
    • 2008
  • Demand for the highly efficient and high performance urban energy supply system having been continuously increased according to the rise of quality of life and continuously increased energy cost all over the world. The district heating and cooling system is very effective way for energy saving, cost reduction, and demand side management of energy. There are several district cooling supply technologies such as chilled water direct transportation, installation of absorption type chiller in the user side, and desiccant cooling. This study investigates the advantage and technical problems of each district cooling technology. Also, it is necessary political and financial support system for the extension of district cooling system.

  • PDF

A Study on the Design and Analysis of District Solar Heating and Cooling System with Preheating of Returning District Heating Water (지역난방수 환수 승온방식의 태양열 지역냉난방 시스템 분석)

  • Baek Nam-Choon;Shin U-Cheul;Lee Jin-Kook;Yoon Eung-Sang;Yoon Suk-Man
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.433-437
    • /
    • 2005
  • This study was carried out the design and analysis of solar thermal system with preheating of returning district heating water for the Chung-ju district heating and cooling system. Two different types of solar collectors are used for this system. TRNSYS simulation program was used for the analysis. As a results, the solar system efficiency is $35.8\%$ for the plate type and $45.1\%$ for the evacuated type solar collector in the case of $50^{\circ}C$ for the returning district heating water temperature. The returning district heating water temperature is on of the very important factors that is influence on the system efficiency. So the effect of the returning district heating water temperature on the system efficiency is analyzed in this study.

  • PDF

A Study on the Integrated Fusion Technology Between a Carbon Dioxide Emission and a District Cooling Energy Using a Cold Energy ($CO_2$ 배출문제와 냉열이용 지역집단 냉방에너지에 관한 통합적 융합기술 연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.34-40
    • /
    • 2006
  • This paper provides a fusion technology between a district cooling energy system and an environment conservation policy based on the energy savings and reusable cold energy resources. The district heating and cooling systems are very effective ways for an energy saving, a cost reduction and a safety control. It is necessary to equalize the energy savings and an environmental preservation policy for an improved human lift. A gasification process of a liquefied natural gas, cooling water from deep seawater and an ice water thermal storage system may produce a cold energy. A district cooling system is used to cool an apartment, office buildings and factory facilities with a cooling energy supply pipeline. LNG cooling energy will switch a conventional air-conditioning system, which is operated by on electrical energy and a Freon refrigerant. Coincident with significant clean energy and operating cost savings, LNG cold energy system owen radical reductions in an air-borne pollutant, $CO_2$ and the release of environmentally harmful refrigerants compared with that of the conventional air-conditioning system. This study provides useful information on the fusion technology of a LNG cold energy usage and energy savings, and environmental conservation.

  • PDF

A Basic Study on the District Cooling System of LNG Cold Thermal Energy (LNG 냉열 에너지의 지역 냉방 시스템에 관한 기반 연구)

  • Kim Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.36-43
    • /
    • 2003
  • This paper provides the possibility of the district cooling system by using a LNG cold thermal energy. A liquefied natural gas provides a plenty of cooling source energy during a gasification of a liquefied natural gas. In recent, an ice thermal storage system is used for cooling a building, and a deep water source cooling system has been introduced as a district cooling system in which is used to cool the office towers and other large buildings in old and new downtown. LNG cooling energy refers to the reuse of a large body of naturally cold fluids as a heat sink for process and comfort space cooling as an alternative of conventional, refrigerant based cooling systems. Coincident with significant clean energy and operating cost savings, LNG cold energy cooling system offers radical reductions in air-borne pollutants and the release of environmentally harmful refrigerants in comparison to the conventional air-conditioning system. This study provides useful information on the basic design concepts, environmental considerations and performance related to the application of LNG cold thermal energy.

  • PDF

Application of District Cooling System for Deep Ocean Water by Case Study (사례 분석을 통한 해양심층수의 지역냉방시스템 적용 방안)

  • Jin, Su-Hwuy;Park, Jin-Young;Kim, Sam-Uel;Kim, Hyeon-Ju
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.179-184
    • /
    • 2011
  • The development of new energy has attracted consideration attention due to the high oil price and environmental problems. In advanced country, they have tried to carry out a long range plan for energy. We need to develop new energy for Low Carbon Green Growth in Korea. The building is 30% among ratio of energy consumption in Korea. And in the past, heating energy was high ratio for energy using at home. But recently, the demand for cooling energy keeps growing due to rising average temperature on the earth and improvement of life quality. In this situation, the energy of lake water and ocean water has studied to utilize in advanced country because of low temperature at underwater. But the study for deep water is still a lot left to do. In this study, we analyzed district cooling system and the present condition. Analyzing the deep lake water cooling system in Toronto, we found an application of district cooling system using deep ocean water. Deep lake water uses heat source for district cooling and water source for city in Toronto. So reducing the initial cost, this city had economic effect. When DLWC was applied at existing building, the heat exchanger was installed instead of cooling tower and refrigerator. And the heat exchanger used to connect main pipe with cool water on city. System using deep ocean water can be applied as a similar way to supply cool water from lake to building.

  • PDF

Characteristics of Drag Reduction Additives in the Application of District Cooling System (지역냉방시스템에의 적용을 위한 마찰저항감소 첨가물 특성 연구)

  • 윤석만;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.251-257
    • /
    • 2000
  • District heating and cooling systems offer highly efficient energy utilization and maintenance by centralizing heat management. More pumping power, however, is required because the water has to travel long distance from heat source to the users. In the present study, a trace of drag reduction additives is added to the District Cooling system to achieve a significant drag reduction and save pumping power. Water-soluble polymers, surfactants, and environment-friendly degradable polymers are used as effective drag reducing additives. Time dependent percent drag reductions are compared for various additive solutions at 100 wppm concentration for different water velocity. Without as an anionic surfactant, copolymer was most effective in percent drag reduction. It is found that there exists an optimal condition when copolymer is mixed with SDS. An environment-friendly degradable polymer, xanthan gum, is found to be a significant drag reduction additive. Ice slurry systems, can give less pressure drops compared with chilled water system for certain condtions. Drag reduction additives were also effective for the ice slurry system.

  • PDF

A District Cooling System using Ice Slurry for the Uncertain Cooling Load of the Future (미래의 불확실한 냉방부하에 대한 아이스슬러리를 이용한 지역냉방시스템)

  • Lee, Yoon-Pyo;Ahn, Young-Hwan;Yoon, Seok-Mann
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.233-238
    • /
    • 2006
  • A new district cooling system using ice slurry for the uncertain cooling load of the future is presented. The chilled water produced by the absorption chillers is used for the base cooling load. The temperature of the chilled water is reduced by mixing of ice slurry depending on increasing of the cooling load. Finally, IPF of the ice slurry is increased up to 10% at the peak load. The transporting mass flow rate is decreased down to 44.7%, and the diameter of the main pipe is decreased down to 66.7%, but the diameter of the branched pipe is designed as the same size of the chilled water.

  • PDF

A District Cooling System using Ice Slurry for the Uncertain Cooling Load of the Future and its Economic Evaluation (미래의 불확실한 냉방부하에 대한 아이스슬러리를 이용한 지역냉방시스템 및 경제성 평가)

  • Lee Yoon-Pyo;Ahn Young-Hwan;Yoon Seok-Mann
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.10
    • /
    • pp.776-782
    • /
    • 2006
  • A new district cooling system using ice slurry for the uncertain cooling load of the future is presented. The chilled water produced by the absorption chillers is used for the base cooling load. The temperature of the chilled water is reduced by mixing of ice slurry depending on increasing of the cooling load. Finally, IF of the ice slurry is increased up to 10% at the peak load. The transporting mass flow rate is decreased down to 44.7%, and the diameter of the main pipe is decreased down to 66.7%, but the diameter of the branched pipe is designed as the same size of the chilled water.

A Study on the Planning of Urban Energy Supply Systems Including Co-generation System (도시지역 에너지 공급체계 개선방안 검토 연구)

  • Woo, Nam-Sub;Lee, Tae-Won;Kim, Yong-Ki
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.177-182
    • /
    • 2009
  • The purpose of this study is to investigate planning of urban energy supply systems configuration and operating conditions for the district heating and cooling system using combined heat and power system. Generally the district heating and cooling system has been known to one of the effective way for energy saving, cost reduction and demand side management of energy. Economical analyses were carried out and operating characteristics for some systems were examined in terms of GER factor which represents to the ratio of gas and electricity costs. Rates of the energy consumption and the $CO_2$ emission were compared from the system configuration of the energy supply system with new district cooling system with the conventional one.

  • PDF

The Simulation Approach for the Optimal Design of Small Scale District Heating and Cooling System (소규모 지역냉난방 시스템 최적설계 시뮬레이션)

  • Im, Yong-Hoon;Park, Hwa-Choon;Cho, Soo;Jang, Cheol-Yong;Chung, Mo
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.147-154
    • /
    • 2008
  • A simulation program is developed for the optimal design of small scale district heating and cooling system. Main features for the simulation program are the reliability and the easiness for the optimal design of the DHC(District Heating and Cooling) systems. In order for implementing those features, the operational characteristics according to the prime movers is modeled based on the materials of efficiency as a function of operational load. The unit energy load model is also developed extensively for several building types, of which the corresponding district consist, such as apartment complex, hotel, hospital, buildings for business and commercial use respectively. The specific features and the overall procedure of the simulation are described in brief in this paper. The results of the simulation for several test cases will be presented in subsequent study.

  • PDF