• Title/Summary/Keyword: Distribution-Science

Search Result 19,611, Processing Time 0.049 seconds

A Study on the Vascular Flora and its Management Plan at The Forest Genetic Resource Reserve of Mt. Munsu (Gimpo) (문수산(김포) 산림유전자원보호구역 관속식물상 변화 및 관리방안)

  • Yun, Ho Geun;Lee, Ah young;An, Jong Bin;Hwang, Tae Young;Lee, Jong Won
    • Korean Journal of Plant Resources
    • /
    • v.34 no.4
    • /
    • pp.311-338
    • /
    • 2021
  • This study was investigated to find out the distribution of vascular flora and remarkable plants and its factors and management plan in the forest genetic resource reserve of Mt. Munsu, located in the DMZ and DMZ border area in Gimpo, Gyeonggi-do province. The survey was carried out 17 times from April 2019 to October 2020. First of all, in the forest genetic resource reserve of the Mt. Munsu, a total of 444 taxa in 95 families, 276 genera, 395 species, 13 subspecies, 33 varieties and 3 forms. This result was found to be about 9.09% of the total 4,881 taxa of vascular plants in Korea. In addition, endemic plants were classified as 6 taxa. Floristic special and rare plants were identified as 39 taxa and 3 taxa, respectively. Lastly, the invasive alien plants that appeared in Mt. Munsu of the forest genetic resource reserve were observed in 58 taxa. Moreover, the naturalization rate was 13.1% and the urbanization index was calculated to be 18.0%. As a result of comparing the vascular flora at the forest genetic resource reserve on Mt. Munsu identified in this study with previous studies, it was found the number of taxa was decreased compared to the previous studies, despite the fact that the recent survey section was wider and more varies routes were investigated. In particular, it was confirmed that the number of rare and endemic plants decreased significantly, and the number of invasive plants greatly spread to forest roads and hiking trails. Therefore, it is considered that the forest rest year system should be introduced for the conservation and management of native plants in the forest genetic resource reserve.

Mechanism of steel pipe reinforcement grouting based on tunnel field measurement results (터널 현장 계측결과를 통한 강관보강 그라우팅의 거동 메커니즘)

  • Shin, Hyunkang;Jung, Hyuksang;Lee, Yong-joo;Kim, Nag-young;Ko, Sungil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.3
    • /
    • pp.133-149
    • /
    • 2021
  • This study aims to report the behavioral mechanism of steel pipe reinforcement grouting, which is being actively used to ensure the stability of the excavation surface during tunnel excavation, based on measurements taken at the actual site. After using a 12 m steel pipe attached with a shape displacement meter and a strain gauge to reinforce the actual tunnel surface, behavioral characteristics were identified by analyzing the measured deformation and stress of the steel pipe. Taking into account that the steel pipes were overlapped every 6 m, the measured data up to 7 m of excavation were used. In addition, the behavioral characteristics of the steel pipe reinforcement according to the difference in strength were also examined by applying steel pipes with different allowable stresses (SGT275 and SGT550). As a result of analyzing the behavior of steel pipes for 7 hours after the first excavation for 1 m and before proceeding with the next excavation, the stress redistribution due to the arching effect caused by the excavation relaxation load was observed. As excavation proceeded by 1 m, the excavated section exhibited the greatest deformation during excavation of 4 to 6 m due to the stress distribution of the three-dimensional relaxation load, and deformation and stress were generated in the steel pipe installed in the ground ahead of the tunnel face. As a result of comparing the behavior of SGT275 steel pipe (yield strength 275 MPa) and SGT550 steel pipe (yield strength 550 MPa), the difference in the amount of deformation was up to 18 times and the stress was up to 12 times; the stronger the steel pipe, the better it was at responding to the relaxation load. In this study, the behavior mechanism of steel pipe reinforcement grouting in response to the arching effect due to the relaxation load was identified based on the measured data during the actual tunnel excavation, and the results were reported.

A Proposal of Direction of Wind Ventilation Forest through Urban Condition Analysis - A Case Study of Pyeongtaek-si - (도시 여건 분석을 통한 바람길숲 조성방향 제시 - 평택시를 사례로 -)

  • SON, Jeong-Min;EUM, Jeong-Hee;SUNG, Uk-Je;BAEK, Jun-Beom;KIM, Ju-Eun;OH, Jeong-Hak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.101-119
    • /
    • 2020
  • Recently, as a plan to improve the particulate matter and thermal environment in the city, urban forests acting as wind ventilation corridor(wind ventilation forest) are promoted nationwide. This study analyzed the conditions for the creation of wind ventilation forest(vulnerable areas of the particulate matter and thermal environment, distribution of wind ventilation forest, characteristics of ventilation corridor) of in Pyeongtae-si, one of the target cities of wind ventilation forest project. Based on the results, the direction of developing on the wind ventilation forest in Pyeongtaek-si was suggested. As a result of deriving areas vulnerable to particulate matter and thermal environment, it was most vulnerable in urban areas in the eastern area of Pyeongtaek-si. Especially, emissions were high from industrial complexes and roads such as the Pyeongtaek-si thermal power plant, ports, and the national road no. 1. The wind ventilation forest in Pyeongtaek-si was distributed with small-scale windgenerating forests, wind-spreading forests, and wind-connection forests fragmented and disconnected. The characteristic of the overall wind ventilation corridor in Pyeongtaek-si is that the cold air generated from Mt.Mubong, etc., strongly flowed into Pyeongtaek-si and flowed in the northwest direction. Therefore, it is necessary to preserve and expand the wind-generating forests in Pyeongtaek-si in the long term, and it was important to create wind-spreading forests and wind-connection forests so that cold air could flow into the vulnerable area. In addition, in industrial complexes and roads where particulate matter is generated, planting techniques should be applied to prevent the spread of particulate matte to surrounding areas by creating wind-spreading forests considering the particulate matter blocking. This study can be used not only as the basis data for wind ventilation forest project in Pyeongtaek-si, but also as the basis data for urban forest creation and management.

Comparative Analysis of Environmental Ecological Flow Based on Habitat Suitability Index (HSI) in Miho stream of Geum river system (서식지적합도지수(HSI)에 따른 환경생태유량 비교 분석 : 미호천을 중심으로)

  • Lee, Jong Jin;Hur, Jun Wook
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.68-76
    • /
    • 2022
  • In this study, the Habitat Suitability Index (HSI) was calculated in the Miho stream of the Geum river system, and the environmental ecological flow by point was evaluated. Two points (St.3 and St.8) representing the up and downstream of Miho Stream were selected, in order to calculate the Habitat Suitability Index, the depth and velocity at point where each species is appeared were investigated. The Habitat Suitability Index (HSI) was calculated by the Washington Department of Fish and Wildlife (WDFW) method using the number collected by water depth and velocity section and the results of the flow rate survey. Two target species were selected in this study; dominant species and swimming species sensitive to flow. In the case of a single species of Zacco platypus, the water depth was 0.1 - 0.5 m and the velocity was 0.2 - 0.5 m/s. For species of swimming fish, the water depth was 0.2 - 0.5 m and the velocity was 0.2 - 0.5 m/s. The discharge-Weighted Useable Area (WUA) relationship curve and habitat suitability distribution were simulated at the Miho Stream points St.3 and St.8. At the upstream St.3 of Miho Stream, the optimal discharge was simulated as 4.0 m3/s for swimming fishes and 2.7 m3/s for Zacco platypus. At the downstream point of St.8, species of swimming fish were simulated as 8.8 m3/s and Zacco platypus was simulated as 7.6 m3/s. In both points, the optimal discharge of swimming fish was over estimated. This is a result that the Habitat Suitability Index for swimming fish requires a faster flow rate than the habitat conditions of the Zacco platypus. In the calculation of the minimum discharge, the discharge of Zacco platypus is smaller and is evaluated to provide more Weighted Useable Area. In the case of swimming fishes, narrow range of depth and velocity increases the required discharge and relatively decreases the Weighted Useable Area. Therefore, when calculating the Habitat Suitability Index for swimming fishes, it is more advantageous to calculate the index including the habitat of all fish species than to narrow the range.

Distribution and Origin of the Mid-depth Cold Water Pools Observed in the Jeju Strait in the Summer of 2019 (2019년 여름철 제주해협에서 관측된 중층 저온수의 분포와 기원)

  • DOHYEOP YOO;JONG-KYU KIM;BYOUNG-JU CHOI
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.1
    • /
    • pp.19-40
    • /
    • 2023
  • To investigate the role of water masses in the Jeju Strait in summer on the shallow coastal region and the characteristics of water properties in the strait, temperature and salinity were observed across the Jeju Strait in June, July, and August 2019. The cold water pool, whose temperature is lower than 15℃, was observed in the mid-depths of the central Jeju Strait and on the northern bottom slope of the strait. The cold water pools have the lowest temperature in the strait. To identify water masses comprising the cold water pool in the Jeju Strait, mixing ratios of water masses were calculated. The mid-depth cold water pool of the Jeju Strait consists of 54% of the Kuroshio Subsurface Water (KSSW) and 33% of the Yellow Sea Bottom Cold Water (YSBCW). Although the cold water pool is dominantly affected by the KSSW, the YSBCW plays a major role to make the cold water pool maintain the lowest temperature in the Jeju Strait. To find origin of the cold water pool, temperature and salinity data from the Yellow Sea, East China Sea, and Korea Strait in the summer of 2019 were analyzed. The cold water pool was generated along the thermohaline frontal zone between the KSSW and YSBCW in the East China Sea where intrusion and mixing of water masses are active below the seasonal thermocline. The cold water in the thermohaline frontal zone had similar mixing ratio to the cold water pool in the Jeju Strait and it advected toward the Korea Strait and shallow coastal region off the south coast of Korea. Intrusion of the mid-depth cold water pool made temperature inversion in the Jeju Strait and affected sea surface temperature variations at the coastal region off the south coast of Korea.

A Research on the Special Characteristics of the Changes of the Vegetations in the World Cup Park Landfill Slope District (월드컵공원 사면지구 식생현황 및 변화 특성 연구)

  • Han, Bong-Ho;Park, Seok-Cheol;Choi, Han-Byeol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.4
    • /
    • pp.1-15
    • /
    • 2023
  • This research intended to reveal the special characteristics of the vegetation structure and the tendency of change of -landfill slope districts, which are reclaimed land, through an investigationsinto the presently existent vegetation and plant community structure of the World Cup Park landfill slope district. For the analysis of changes in vegetation, this study compared the results of field surveys in 1999, 2003, 2005, 2007, 2008, 2012, 2016, and 2021. For the investigation into the plant community structure, a field investigation was carried out in 2021 with six fixed investigation districts designated in 1999 as subjects. To analyze the change in the plant community structure, the past data on the population, the number of the species, and the species diversity by the layer in 2021 were compared and analyzed in the landfill slope district, which is reclaimed land. The changes of the vegetation distribution and the power had been affected by typhoons (Kompasu). Above the plantation foundation, which had been dry and poor, Salix koreensis, marsh woody plants that had formed the community, decreased greatly. The Robinia pseudoacacia community, after the typhoon in 2010, decreased in the number of species and population. Afterward, it showed a tendency to rebound. Regarding the Ailanthus altissima-Robinia pseudoacacia-Paulownia tomentosa community, the number of the species and the population had shown a change similar to the Robinia pseudoacacia community. The Paulownia tomentosa and the Ailanthus altissima have been culled. The slope was predicted as a Future Robinia pseudoacacia forest. The Salix pseudolasiogyne community has been transitioning to a Robinia pseudoacacia forest. Only some enumeration districts, the Robinia pseudoacacia forests and the Salix pseudolasiogyne, had been growing. However, most had been in been declining. It was predicted that this community will be maintained as a Robinia pseudoacacia forest in the future. As these vegetation communities are the representative vegetation of the landfill slope districts, which is reclaimed land, there is a need to understand the ecosystem changes of the community through continuous monitoring. The results of this research can be utilized as a basic material for the vegetation restoration of reclaimed land.

Studies on the Evaluation of the Spent Composts of Selenium-Enriched Mushrooms as a Feed Selenium Source (셀레늄강화 버섯폐배지에 대한 사료 셀레늄공급원으로의 평가 연구)

  • Kim, W.Y.;Min, J.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.7 no.1
    • /
    • pp.118-130
    • /
    • 2005
  • This study was conducted to evaluate the spent composts of selenium-enriched mushrooms as a feed selenium Source. Total selenium (Se) contents and Se profiles in the spent mushroom composts (SMC) were determined. In addtion, we also investigated the metabolism in relation to Se accumulation in the mushroom. Mushrooms used in this study were Flammulina velutipes and Se enriched mushrooms were grown for 60 days by adding 2 mg of inorganic Se (Na2SeO3) per kg of mushroom composts (MC) on as-fed basis and it was compared with mushrooms not to add Se to the MC. Total Se contents for Se-treated mushrooms were significantly increased (P<0.0001) by 20-fold (4.51 ㎍/g of dry) compared to Se-untreated (0.23 ㎍/g of dry). On the contrary, organic Se proportion was significantly lower (P<0.0001) in the Se-treated mushroom (72.3%) than Se-untreated (100%, not analytically detected of inorganic Se). Se distribution upon a length in the Se-treated mushrooms was the highest in the bottom part (6.86 ㎍/g of dry) near to MC, and top and middle parts were significantly lower (3.71 and 3.01 ㎍/g of dry, respectively) than the bottom (P<0.001). In the SMC from Se-treated mushrooms, a high concentration of Se (5.04 ㎍/g of dry) was still remained, but that from Se-untreated mushrooms was significantly low (P<0.0001) as 0.08 ㎍/g of dry. Se-treated SMC showed a high rate of organic Se (65.67%), suggesting that most of inorganic Se in the SMC was converted to organic Se by mushroom mycelia, and Se-untreated SMC showed 100% of organic Se, not being detected of inorganic Se. Prior to mycelia inoculation in the mushroom culture, the sterilization of MC brought approximately 18% of Se loss in the MC. This result is in accordance with facts generally known that Se is weak in the high temperature and it is consequently volatilized under that condition. Apparent and net accumulation rates (%) for Se into mushrooms were 14.81 and 10.14%, respectively and their difference (4.67%) is considered that it is due to the volatilization into the air via metabolic process of mushroom itself. From the result of this study, inorganic Se addition to MC for mushroom improved the Se content in the mushroom and SMC from Se-enriched mushrooms contained a high concentration of Se. Mycelium and fruiting body from mushrooms converted inorganic Se in MC to organic Se, indicating a high proportion of organic Se in the mushroom and SMC. Therefore, Se in Se-enriched mushroom and SMC was recognized as Se sources of food for human as well as feed for livestock.

A Study on the Wind Ventilation Forest Planning Techniques for Improving the Urban Environment - A Case Study of Daejeon Metropolitan City - (도시환경 개선을 위한 바람길숲 조성 계획기법 개발 연구 - 대전광역시를 사례로 -)

  • Han, Bong-Ho;Park, Seok-Cheol;Park, Soo-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.28-41
    • /
    • 2023
  • The objective of the study was to develop an Urban Windway Forest Creation Planning Technique for the Improvement of the Urban Environment using the case of Daejeon Metropolitan City. Through a spatial analysis of fine dust and heat waves, a basin zone, in which the concentration was relatively serious, was derived, and an area with the potential of cold air flow was selected as the target area for the windway forest development by analyzing the climate and winds in the relevant zone. Extreme fine dust areas included the areas of the Daejeon Industrial Complex Regeneration Business District in Daedeok-gu and Daedeok Techno Valley in Yuseong-gu. Heat wave areas included the areas of Daedeok industrial Complex in Moksang-dong, the Daejeon Industrial Complex Regeneration Business District in Daehwa-dong, and the high-density residential area in Ojeong-dong. As a result of measuring the wind speeds in Daejeon with an Automatic Weather System, the average wind speeds during the day and night were 0.1 to 1.7 m/s,, respectively. So, a plan of for a windway forest that smoothly induces the movement of cold air formed in outer forests at night is required. The fine dust/heat wave intensive management zones of Daejeon Metropolitan City were Daejeoncheon, Yudeungcheon, Gapcheon-Yudeungcheon, and Gapcheon. The windway forest formation plan case involved the old city center of Daejeon Metropolitan City among the four zones, the Gapcheon-Yudeungcheon area, in which the windway formation effect was presumed to be high. The Gapcheon-Yudeungcheon area is a downtown area that benefits from the cold and fresh air generated on Mt. Gyejok and Mt. Wuseong, which are outer forests. Accordingly, the windway forest was planned to spread the cold air to the city center by connecting the cold air generated in the Seosa-myeon forest of Mt. Gyejok and the Namsa-myeon forest of Mt. Wuseong through Gapcheon, Yudeungcheon, and street forests. After selecting the target area for the wind ventilation forest, a climate map and wind formation function evaluation map were prepared for the area, the status of variation wind profiles (night), the status of fine dust generation, and the surface temperature distribution status were grasped in detail. The wind ventilation forest planning concept and detailed target sites by type were identified through this. In addition, a detailed action plan was established according to the direction of creation and setting of the direction of creation for each type of wind ventilation forest.

Effects of Thawing Conditions in Sample Treatment on the Chemical Properties of East Siberian Ice Wedges (동시베리아 얼음쐐기 시료의 해동방법이 시료의 화학적 특성분석에 미치는 영향)

  • Subon Ko;Jinho Ahn;Alexandre Fedorov;Giehyeon Lee
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.727-736
    • /
    • 2022
  • Ice wedges are subsurface ice mass structures that formed mainly by freezing precipitation with airborne dust and surrounding soil particles flowed through the active layer into the cracks growing by repeating thermal contractions in the deeper permafrost layer over time. These ice masses characteristically contain high concentrations of solutes and solids. Because of their unique properties and distribution, the possibility of harnessing ice wedges as an alternative archive for reconstructing paleoclimate and paleoenvironment has been recently suggested despite limited studies. It is imperative to preserve the physicochemical properties of the ice wedge (e.g., solute concentration, mineral particles) without any potential alteration to use it as a proxy for reconstructing the paleo-information. Thawing the ice wedge samples is prerequisite for the assessment of their physicochemical properties, during which the paleo-information could be unintentionally altered by any methodological artifact. This study examined the effect of thawing conditions and procedures on the physicochemical properties of solutes and solid particles in ice wedge samples collected from Cyuie, East Siberia. Four different thawing conditions with varying temperatures (4 and 23℃) and oxygen exposures (oxic and anoxic) for the ice wedge sample treatment were examined. Ice wedge samples thawed at 4℃ under anoxic conditions, wherein biological activity and oxidation were kept to a minimum, were set as the standard thawing conditions to which the effects of temperature and oxygen were compared. The results indicate that temperature and oxygen exposure have negligible effects on the physicochemical characteristics of the solid particles. However, the chemical features of the solution (e.g., pH, electric conductivity, alkalinity, and concentration of major cations and trace elements) at 4℃ under oxic conditions were considerably altered, compared to those measured under the standard thawing conditions. This study shows that the thawing condition of ice wedge samples can affect their chemical features and thereby the geochemical information therein for the reconstruction of the paleoclimate and/or paleoenvironment.

Comparison of rainfall-runoff performance based on various gridded precipitation datasets in the Mekong River basin (메콩강 유역의 격자형 강수 자료에 의한 강우-유출 모의 성능 비교·분석)

  • Kim, Younghun;Le, Xuan-Hien;Jung, Sungho;Yeon, Minho;Lee, Gihae
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.75-89
    • /
    • 2023
  • As the Mekong River basin is a nationally shared river, it is difficult to collect precipitation data, and the quantitative and qualitative quality of the data sets differs from country to country, which may increase the uncertainty of hydrological analysis results. Recently, with the development of remote sensing technology, it has become easier to obtain grid-based precipitation products(GPPs), and various hydrological analysis studies have been conducted in unmeasured or large watersheds using GPPs. In this study, rainfall-runoff simulation in the Mekong River basin was conducted using the SWAT model, which is a quasi-distribution model with three satellite GPPs (TRMM, GSMaP, PERSIANN-CDR) and two GPPs (APHRODITE, GPCC). Four water level stations, Luang Prabang, Pakse, Stung Treng, and Kratie, which are major outlets of the main Mekong River, were selected, and the parameters of the SWAT model were calibrated using APHRODITE as an observation value for the period from 2001 to 2011 and runoff simulations were verified for the period form 2012 to 2013. In addition, using the ConvAE, a convolutional neural network model, spatio-temporal correction of original satellite precipitation products was performed, and rainfall-runoff performances were compared before and after correction of satellite precipitation products. The original satellite precipitation products and GPCC showed a quantitatively under- or over-estimated or spatially very different pattern compared to APHPRODITE, whereas, in the case of satellite precipitation prodcuts corrected using ConvAE, spatial correlation was dramatically improved. In the case of runoff simulation, the runoff simulation results using the satellite precipitation products corrected by ConvAE for all the outlets have significantly improved accuracy than the runoff results using original satellite precipitation products. Therefore, the bias correction technique using the ConvAE technique presented in this study can be applied in various hydrological analysis for large watersheds where rain guage network is not dense.