• 제목/요약/키워드: Distribution-Free Approach

검색결과 135건 처리시간 0.029초

Influence of porosity distribution on vibration analysis of GPLs-reinforcement sectorial plate

  • Jia, Anqiang;Liu, Haiyan;Ren, Lijian;Yun, Yingxia;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.111-127
    • /
    • 2020
  • The goal of this study is to fill this apparent gap in the area about investigating the effect of porosity distributions on vibrational behavior of FG sectorial plates resting on a two-parameter elastic foundation. The response of the elastic medium is formulated by the Winkler/Pasternak model. The internal pores and graphene platelets (GPLs) are distributed in the matrix either uniformly or non-uniformly according to three different patterns. The model is proposed with material parameters varying in the thickness of plate to achieve graded distributions in both porosity and nanofillers. The elastic modulus of the nanocomposite is obtained by using Halpin-Tsai micromechanics model. The annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. The 2-D differential quadrature method as an efficient and accurate numerical approach is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and those reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. It is observed that the maximum vibration frequency obtained in the case of symmetric porosity and GPL distribution, while the minimum vibration frequency is obtained using uniform porosity distribution. Results show that for better understanding of mechanical behavior of nanocomposite plates, it is crucial to consider porosities inside the material structure.

Vibration analysis of sandwich sectorial plates considering FG wavy CNT-reinforced face sheets

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제28권5호
    • /
    • pp.541-557
    • /
    • 2018
  • This paper presents the influence of carbon nanotubes (CNTs) waviness and aspect ratio on the vibrational behavior of functionally graded nanocomposite sandwich annular sector plates resting on two-parameter elastic foundations. The carbon nanotube-reinforced (CNTR) sandwich plate has smooth variation of CNT fraction along the thickness direction. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness and their mechanical properties are estimated by an extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. Effects of CNT distribution, volume fraction, aspect ratio and waviness, and also effects of Pasternak's elastic foundation coefficients, sandwich plate thickness, face sheets thickness and plate aspect ratio are investigated on the free vibration of the sandwich plates with wavy CNT-reinforced face sheets. The study is carried out based on three-dimensional theory of elasticity and in contrary to two-dimensional theories, such as classical, the first- and the higher-order shear deformation plate theories, this approach does not neglect transverse normal deformations. The sandwich annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free.

Nonlinear free vibration of FG-CNT reinforced composite plates

  • Mirzaei, Mostafa;Kiani, Yaser
    • Structural Engineering and Mechanics
    • /
    • 제64권3호
    • /
    • pp.381-390
    • /
    • 2017
  • Present paper deals with the large amplitude flexural vibration of carbon nanotube reinforced composite (CNTRC) plates. Distribution of CNTs as reinforcements may be uniform or functionally graded (FG). The equivalent material properties of the composite media are obtained according to a refined rule of mixtures which contains efficiency parameters. To account for the large deformations, von $K{\acute{a}}rm{\acute{a}}n$ type of geometrical nonlinearity is included into the formulation. The matrix representation of the governing equations is obtained according to the Ritz method where the basic shape functions are written in terms of the Chebyshev polynomials. Time dependency of the problem is eliminated by means of the Galerkin method and the resulting nonlinear eigenvalue problem is solved employing a direct displacement control approach. Results are obtained for completely clamped and completely simply supported plates. Results are first validated for the especial cases of FG-CNTRC and cross-ply laminated plates. Afterwards, parametric studies are given for FG-CNTRC plates with different boundary conditions. It is shown that, nonlinear frequencies are highly dependent to the volume fraction and dispersion profiles of CNTs. Furthermore, mode redistribution is observed in both simply supported and clamped FG-CNTRC plates.

Nonlinear vibration of FG-CNTRC curved pipes with temperature-dependent properties

  • Mingjie Liu;Shaoping Bi;Sicheng Shao;Hadi Babaei
    • Steel and Composite Structures
    • /
    • 제46권4호
    • /
    • pp.553-563
    • /
    • 2023
  • In the current research, the nonlinear free vibrations of curved pipes made of functionally graded (FG) carbon nanotube reinforced composite (CNTRC) materials are investigated. It is assumed that the FG-CNTRC curved pipe is supported on a three-parameter nonlinear elastic foundation and is subjected to a uniform temperature rise. Properties of the curved nanocomposite pipe are distributed across the radius of the pipe and are given by means of a refined rule of mixtures approach. It is also assumed that all thermomechanical properties of the nanocomposite pipe are temperature-dependent. The governing equations of the curved pipe are obtained using a higher order shear deformation theory, where the traction free boundary conditions are satisfied on the top and bottom surfaces of the pipe. The von Kármán type of geometrical non-linearity is included into the formulation to consider the large deflection in the curved nanocomposite pipe. For the case of nanocomposite curved pipes which are simply supported in flexure and axially immovable, the motion equations are solved using the two-step perturbation technique. The closed-form expressions are provided to obtain the small- and large-amplitude frequencies of FG-CNTRC curved pipes rested on a nonlinear elastic foundation in thermal environment. Numerical results are given to explore the effects of CNT distribution pattern, the CNT volume fraction, thermal environment, nonlinear foundation stiffness, and geometrical parameters on the fundamental linear and nonlinear frequencies of the curved nanocomposite pipe.

Effect of Electric Field Concentration by Electrode Patterning on the Incipient Piezoelectric Strain Properties of Lead-Free Piezoceramics

  • Kang, Woo-Seok;Hong, Chang-Hyo;Lee, Young-Jin;Choi, Gangho;Shin, Dong-Jin;Lim, Dong-Hwan;Jeong, Soon-Jong;Jo, Wook
    • 한국세라믹학회지
    • /
    • 제56권6호
    • /
    • pp.549-557
    • /
    • 2019
  • More than two decades of world-wide research efforts have resulted in several classes of potentially important materials. Among them are incipient piezoelectrics, which are especially useful for actuator applications. However, relatively large electric fields are required for activating the large incipient electromechanical strains. So far, many attempts have been made to reduce the required electric field by intentionally inhomogenizing the electric field distribution in the microstructure through core-shell and composite approaches. Here, we show that electric field concentration can be realized simply by adjusting electrode patterns. We have investigated the effect of electrode patterning on the incipient electromechanical strain properties of an exemplarily chosen lead-free relaxor system, revealing that electrode patterning does have a significant role on the strain properties of the given lead-free relaxor system. We believe that this approach would make a new strategy for ones to consider bringing the functional properties of electroceramics beyond their conventional limit.

Free vibration analysis of combined system with variable cross section in tall buildings

  • Jahanshahia, Mohammad Reza;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • 제42권5호
    • /
    • pp.715-728
    • /
    • 2012
  • This paper deals with determining the fundamental frequency of tall buildings that consist of framed tube, shear core, belt truss and outrigger systems in which the framed tube and shear core vary in size along the height of the structure. The effect of belt truss and outrigger system is modeled as a concentrated rotational linear spring at the belt truss and outrigger system location. Many cantilevered tall structures can be treated as cantilevered beams with variable cross-section in free vibration analysis. In this paper, the continuous approach, in which a tall building is replaced by an idealized cantilever continuum representing the structural characteristics, is employed and by using energy method and Hamilton's variational principle, the governing equation for free vibration of tall building with variable distributed mass and stiffness is obtained. The general solution of governing equation is obtained by making appropriate selection for mass and stiffness distribution functions. By applying the separation of variables method for time and space, the governing partial differential equation of motion is reduced to an ordinary differential equation with variable coefficients with the assumption that the transverse displacement is harmonic. A power-series solution representing the mode shape function of tall building is used. Applying boundary conditions yields the boundary value problem; the frequency equation is established and solved through a numerical process to determine the natural frequencies. Computer program has been developed in Matlab (R2009b, Version 7.9.0.529, Mathworks Inc., California, USA). A numerical example has been solved to demonstrate the reliability of this method. The results of the proposed mathematical model give a good understanding of the structure's dynamic characteristics; it is easy to use, yet reasonably accurate and suitable for quick evaluations during the preliminary design stages.

효율성추정(效率性推定)과 생산물정의(生産物定義)에 대한 비교연구(比較硏究) - 미국(美國) 생명보험산업(生命保險産業)을 대상으로 -

  • 김헌수
    • 재무관리연구
    • /
    • 제14권1호
    • /
    • pp.107-139
    • /
    • 1997
  • 다른 금융산업과 마찬가지로 생명보험산업의 효율성에 대한 실증연구는 두 가지 문제에 봉착하게 된다. 하나는 효율성을 실증적으로 추정하는 다양한 추정방법은 일관되게 동일한 결과를 도출하는가 하는 것이며 다른 문제는 효율성추정에 사용된 생산물정의에서 어떤 대리변수를 사용하는 것이 가장 좋으냐 하는 것이다. Yuengert(1993)은 미국 생보산업 전체의 효율성과 추정방법간의 관계를 보고하였는데 본 연구는 추정방법 뿐만 아니라 생보산업 생산물의 정의에 따라 개별생보사의 효율성지수가 차이가 있다는 것을 248개의 미국 생명보험희사를 대상으로 검증하였다. 본 논문에서는 계량 경제학적 방법중 널리 사용되는 SFA(stochastic frontier approach)중에서 비효율성이 half-normal, truncated normal, exponential 분포라고 한 방법들과 비분포방법(DFA: distribution free approach)을 사용하였다. 또 각 방법마다 거수보험료(premiums)와 claims-plus-reserve라는 새로운 생산물 대리변수로 사용하여 효율성을 측정하였다. 그리하여 총 8가지의 다른 방법으로 추정한 효율성지수를 비교, 분석하였다. 연구결과 표1과 2에서 나타난 바와 같이 SFA방법(1, 3, 5번)간에는 결과가 거의 일치하였고 같은 추정방법에서 생산물 대리변수가 다른 경우에도(1과2, 3과4, 5와6, 7과8) 결과는 큰 차이가 없었다. 이는 생보산업에서 거수보험료를 생산물 대리변수로 하는 것이 이론적 문제가 있음에도 불구하고 구조적 편견(systematic bias)은 나타나지 않았다는 Suret(1991)의 결과를 지지하고 있다. DFA방법(7과 8번)과 SFA방법(1-6번)간에는 상관계수는 낮게 나타났는데 이는 생보산업의 효율성을 각각 DFA와 SPA방법을 사용한 두 연구(Gardner and Grace, 1993; Zi, 1994) 결과의 차이와 일치하고 있다.

  • PDF

Point-level deep learning approach for 3D acoustic source localization

  • Lee, Soo Young;Chang, Jiho;Lee, Seungchul
    • Smart Structures and Systems
    • /
    • 제29권6호
    • /
    • pp.777-783
    • /
    • 2022
  • Even though several deep learning-based methods have been applied in the field of acoustic source localization, the previous works have only been conducted using the two-dimensional representation of the beamforming maps, particularly with the planar array system. While the acoustic sources are more required to be localized in a spherical microphone array system considering that we live and hear in the 3D world, the conventional 2D equirectangular map of the spherical beamforming map is highly vulnerable to the distortion that occurs when the 3D map is projected to the 2D space. In this study, a 3D deep learning approach is proposed to fulfill accurate source localization via distortion-free 3D representation. A target function is first proposed to obtain 3D source distribution maps that can represent multiple sources' positional and strength information. While the proposed target map expands the source localization task into a point-wise prediction task, a PointNet-based deep neural network is developed to precisely estimate the multiple sources' positions and strength information. While the proposed model's localization performance is evaluated, it is shown that the proposed method can achieve improved localization results from both quantitative and qualitative perspectives.

Vibration and mode shape analysis of sandwich panel with MWCNTs FG-reinforcement core

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제25권3호
    • /
    • pp.347-360
    • /
    • 2017
  • The goal of this study is to fill this apparent gap in the area about vibration analysis of multiwalled carbon nanotubes (MWCNTs) curved panels by providing 3-D vibration analysis results for functionally graded multiwalled carbon nanotubes (FG-MWCNTs) sandwich structure with power-law distribution of nanotube. The effective material properties of the FG-MWCNT structures are estimated using a modified Halpin-Tsai equation. Modified Halpin-Tsai equation was used to evaluate the Young's modulus of MWCNT/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. The exponential shape factor modifies the Halpin-Tsai equation from expressing a straight line to a nonlinear one in the MWCNTs wt% range considered. Also, the mass density and Poisson's ratio of the MWCNT/phenolic composite are considered based on the rule of mixtures. Parametric studies are carried out to highlight the influence of MWCNT volume fraction in the thickness, different types of CNT distribution, boundary conditions and geometrical parameters on vibrational behavior of FG-MWCNT thick curved panels. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary conditions including Free, Simply supported and Clamped at the curved edges. For an overall comprehension on 3-D vibration analysis of sandwich panel, some mode shape contour plots are reported in this research work.

Team Management for Better Performance that Sells to Customers: Aligning the Stars

  • Kang, Eungoo;Hwang, Hee-Joong
    • 유통과학연구
    • /
    • 제15권7호
    • /
    • pp.19-24
    • /
    • 2017
  • Purpose - There are several problems that organizations face to make a better team-based system such as free-rider issue, assigned difficult jobs unfairly and bickering between high performers and average performers. The purpose of this study is to provide solutions for practitioners through past academic studies on how organizations can resolve several issues in team management. Ultimately, it would lead to employees as better performers for organization's profitability and customers' satisfaction. Research design, data, and methodology - Solution 1 - put employees who have a similar performance ability together into a same team and apply 'growth' approach for low performance team. Solution 2 - make a new evaluation system which is balanced between individual's performance and team's performance. Solution 3 - monitor thoroughly to diffuse difficult works equally among teams and develop management practice system that may prevent or resolve difficult work-loads for a team or an individual performer. Result - Investigation suggests that organizations may resolve three conflicts which come from team base system. Moreover, the implications of results show that the most important criteria in team management depend on whether performers have a similar ability in the same team and management handles issue of justice and the performance of each employee is evaluated by total team performance evaluation simultaneously. Conclusions - All in all, our recommendation concludes that if three issues are resolved, the lack of trust in team-based system among team members will be missed.