• Title/Summary/Keyword: Distribution rate constant

Search Result 363, Processing Time 0.03 seconds

CFD Analysis on the Hydro Turbine by the Existence of Blade Holes (블레이드 타공에 따른 수차의 유동해석)

  • Park, Yoo-Sin;Kim, Ki-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.675-680
    • /
    • 2017
  • Considering that most sewage treatment facilities have a water head of less than 2.0 m and a constant flow rate, the development of a small hydro power generation device capable of maintaining stable power generation and efficiency is urgently needed. In this study, a numerical analysis using the CFD code was carried out to develop a drag force type vertical axis hydro turbine for the improvement of the production efficiency of small-scale hydro energy underlow flow velocity conditions. The blade pressure changes and internal flows were analyzed in the presence or absence of hydro turbine blade holes at a flow velocity of less than 2.0 m/s. The pressure distribution of the hydro turbine blades with holes was found to be about 5.1 % lower than that of the hydro turbine blades without holes. The analysis of the internal flow around the water tank and hydro turbine blade revealed that the flow velocity varied with the vector distribution and that the flow velocity of the hydro turbine blades with holes was 5.6 % less than that of the hydro turbine blades without holes. It is believed that forming a hole in the blade may be helpful for its structural safety.

RETENTIVE FORCE OF ADJUSTABLE DENTAL IMPRESSION TRAYS WITH DIFFERENT RETENTION FORMS (유지형태에 따른 가변형 치과 인상용 트레이의 유지력에 관한 연구)

  • Song Kie-Bum;Kim Sung-Rok;Park Kwang-Soo;Kim Yu-Lee;Dong Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.1
    • /
    • pp.15-29
    • /
    • 2005
  • Statement of problem. The adjustable dental impression trays were made for being adjusted their width automatically along the width of dental arch. Purpose. The purpose of this study was to investigate the best retentive form of adjustable dental impression tray, and so to make it a more satisfactory product. Material and methods. The eight pairs of adjustable trays were made of ABS(acrylonitrile butadiene styrene) with different distribution of holes and with or without the rim on the border area of them. The experiment was done with the horse-shoe shaped metal plate to pull out the set impression body from the tray, and the tray jig which was made for holding the tray on a lower part of Universal Testing Machine(UTM, Zwick Z020, Zwick Co., Germany). After the impression in the tray was allowed to set four minutes, a tensile force was applied at right angles to the tray which had been previously seated on the jig. The force was applied to measure a maximum retentive force by use of a UTM at a constant strain rate of 100mm per minute. A 2-factor analysis of variance (p<.05) was used to determine whether differences existed among distribution of retentive holes and between rim existing and not. Results. 1 The retentive force of the upper and lower resin tray with 2mm holes on the tray border was highest(25.83/24.98kg). (p<.05) 2. As the tray had more retentive holes, it was less retentive. 3. There was no significant difference in the retentive force of the varied hole intervals in the case of distributing all the area. (p>.05) 4. The rimless trays were more retentive generally, than the rimmed trays except 2 case: upper tray group-all area / 2 mm, intervals and lower tray group-margin only / 2 mm, intervals.(p<.05) 5. Most of the adjustable trays were showed higher retentive force than perforated metal tray except the lower group that perforated on the all area at intervals of 2 mm.

Temperature-dependent Development Model and Forecasting of Adult Emergence of Overwintered Small Brown Planthopper, Laodelphax striatellus Fallen, Population (애멸구 온도 발육 모델과 월동 개체군의 성충 발생 예측)

  • Park, Chang-Gyu;Park, Hong-Hyun;Kim, Kwang-Ho
    • Korean journal of applied entomology
    • /
    • v.50 no.4
    • /
    • pp.343-352
    • /
    • 2011
  • The developmental period of Laodelphax striatellus Fallen, a vector of rice stripe virus (RSV), was investigated at ten constant temperatures from 12.5 to $35{\pm}1^{\circ}C$ at 30 to 40% RH, and a photoperiod of 14:10 (L:D) h. Eggs developed successfully at each temperature tested and their developmental time decreased as temperature increased. Egg development was fasted at $35^{\circ}C$(5.8 days), and slowest at $12.5^{\circ}C$ (44.5 days). Nymphs could not develop to the adult stage at 32.5 or $35^{\circ}C$. The mean total developmental time of nymphal stages at 12.5, 15, 17.5, 20, 22.5, 25, 27.5 and $30^{\circ}C$ were 132.7, 55.9, 37.7, 26.9, 20.2, 15.8, 14.9 and 17.4 days, respectively. One linear model and four nonlinear models (Briere 1, Lactin 2, Logan 6 and Poikilotherm rate) were used to determine the response of developmental rate to temperature. The lower threshold temperatures of egg and total nymphal stage of L. striatellus were $10.2^{\circ}C$ and $10.7^{\circ}C$, respectively. The thermal constants (degree-days) for eggs and nymphs were 122.0 and 238.1DD, respectively. Among the four nonlinear models, the Poikilotherm rate model had the best fit for all developmental stages ($r^2$=0.98~0.99). The distribution of completion of each development stage was well described by the two-parameter Weibull function ($r^2$=0.84~0.94). The emergence rate of L. striatellus adults using DYMEX$^{(R)}$ was predicted under the assumption that the physiological age of over-wintered nymphs was 0.2 and that the Poikilotherm rate model was applied to describe temperature-dependent development. The result presented higher predictability than other conditions.

Decay Rate and Nutrients Dynamics during Decomposition of Oak Roots (상수리나무 뿌리 분해 및 분해과정에 따른 영양염류 변화)

  • 문형태
    • The Korean Journal of Ecology
    • /
    • v.27 no.3
    • /
    • pp.165-171
    • /
    • 2004
  • Weight loss and nutrients dynamics during decomposition of oak roots (diameter classes: R₁〈0.2㎝, 0.5㎝〈R₂〈1㎝, 1㎝〈R₃〈2㎝, 2㎝.〈R₄〈4㎝) (Quercus acutissima) were studied for 33-months in Kongiu, Korea. After 33-months, decomposition rate of R₁, R₂, R₃ and R₄ was 49.6%, 47.5%, 66.4% and 66.1%, respectively. The decomposition constant(k) for R₁, R₂, R₃, and R₄ was 0.249/yr, 0.234/yr, 0.397/yr and 0.393/yr, respectively. Larger diameter class of the root lost more weight than smaller diameter class. N concentration in decomposing oak roots increased in all diameter classes. After 33-months, remaining N in R₁, R₂, R₃ and R₄ was 66.5%, 80.7%, 84.4% and 44.4%, respectively. K concentration in decomposing oak roots decreased in early part of decomposition and then increased in later stage of decomposition. After 33-months, remaining P in R₁, R₂, R₃ and R₄ was 64.7%, 62.4%, 93.1% and 30.7%, respectively. K concentration in decomposing oak roots decreased rapidly in early stage of decomposition. Remaining K in R₁, R₂, R₃ and R₄ was 11.6%, 10.6%, 5.9% and 7.7%, respectively. Ca concentration in decomposing oak roots showed different among diameter classes. After 33-months, remaining Ca in R₁, R₂, R₃ and R₄ was 66.2%, 51.0%, 39.1% and 48.3%, respectively. Initial concentration of Mg in oak root was higher in smaller diameter class. After 33-months, remaining Mg in R₁, R₂, R₃ and R₄ was 15.3%, 29.9%, 24.5% and 69.4%, respectively.

Development of an Emergence Model for Overwintering Eggs of Metcalfa pruinosa (Hemiptera: Flatidae) (미국선녀벌레(Metcalfa pruinosa) (Hemiptera: Flatidae) 월동난 부화 예측 모델 개발)

  • Lee, Wonhoon;Park, Chang-Gyu;Seo, Bo Yoon;Lee, Sang-Ku
    • Korean journal of applied entomology
    • /
    • v.55 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • The temperature-dependent development of Metcalfa pruinosa overwintering eggs was investigated at ten constant temperatures (12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, and $35{\pm}1^{\circ}C$, Relative Humidity 20~30%). All individuals collected before April 13, 2012 failed to develop into first instar larvae. In contrast, some individuals that were collected on April 11, 2013 successfully developed when reared under $20{\sim}32.5^{\circ}C$ temperature regimes. The developmental duration was shortest at $30^{\circ}C$ (13.3 days) and longest at $15^{\circ}C$ (49.6 days) in the fourth collected colony (April 26 2013). Developmental duration decreased with increasing temperature up to $30^{\circ}C$ and development was retarded at high-temperature regimes ($32.5^{\circ}C$). The lower developmental threshold was $10.1^{\circ}C$ and the thermal constant required to complete egg overwintering was 252DD. The Lactin 2 model provided the best statistical description of the relationship between temperature and the developmental rate of M. pruinosa overwintering eggs ($r^2=0.99$). The distribution of the developmental completion of overwintering eggs was well described by the 2-parameter Weibull function ($r^2=0.92$) based on the standardized development duration. However, the estimated cumulative 50% spring emergence dates of overwintering eggs were best predicted by poikilotherm rate model combined with the 2-parameter Weibull model (average difference of 1.7days between observed and estimated dates).

Evaluation for Soil Moisture Stabilization and Plant Growth Response in Horizontal Biofiltration System Depending on Wind Speed and Initial Soil Moisture (풍속과 초기 토양수분에 따른 평면형 바이오필터 내 토양수분 안정화 및 식물 생육반응 평가)

  • Choi, Bom;Chun, Man Young;Lee, Chang Hee
    • Korean Journal of Plant Resources
    • /
    • v.27 no.5
    • /
    • pp.546-555
    • /
    • 2014
  • The final aim of this study is to develop a biofiltration system integrated with plant vegetation for improving indoor air quality effectively depending on indoor space and characteristics. However, to approach this final goal, several requirements such as constant pressure drops (PDs) and soil moisture contents (SMCs), which influence the capacity design for a proper ventilation rate of biofiltration system, should be satisfied. Thus, this fundamental experiment was carried out to adjust a proper wind speed and to ensure a stabilization of initial SMCs within biofilter for uniform distribution of SMCs and PDs, and for normal plant growth, especially avoiding root stress by wind. Therefore, we designed horizontal biofliter models and manufactured them, and then calculated the ventilation rate, air residence time, and air-liquid ration based on the biofilter depending on three levels of wind speed (1, 2, and $3cm{\cdot}s^{-1}$). The relative humidity (RH) and PD of the humidified air coming out through the soil within the biofilter, and SMC of the soil and plant growth parameters of lettuce and duffy fern grown within biofilter were measured depending on the three levels of wind speed. As a result of wind speed test, $3{\cdot}sec^{-1}$ was suitable to keep up a proper RH, SMC, and plant growth. Thus, the next experiment was set up to be two levels of initial SMCs (low and high initial SMC, 18.5 and 28.7%) within each biofilter operated and a non-biofiltered control (initial SMC, 29.7%) on the same wind speed ($3cm{\cdot}sec^{-1}$), and measured on the RH and PD of the air coming out through the soil within the biofilter, and SMC of the soil and plant growth parameters of Humata tyermani grown within biofilter. This result was similar to the first results on RHs, SMCs, and PDs keeping up with constant levels, and three SMCs did not show any significant difference on plant growth parameters. However, two biofiltered SMCs enhanced dry weights of the plants slightly than non-biofiltered SMC. Thus, the stability of this biofiler system keeping up major physical factors (SMC and PD) deserved to be adopted for designing an advanced integrated biofilter model in the near future.

Thermal Effects on the Development, Fecundity and Life Table Parameters of Aphis craccivora Koch (Hemiptera: Aphididae) on Yardlong Bean (Vigna unguiculata subsp. sesquipedalis (L.)) (갓끈동부콩에서 아카시아진딧물[Aphis craccivora Koch (Hemiptera: Aphididae)]의 온도발육, 성충 수명과 산란 및 생명표분석)

  • Cho, Jum Rae;Kim, Jeong-Hwan;Choi, Byeong-Ryeol;Seo, Bo-Yoon;Kim, Kwang-Ho;Ji, Chang Woo;Park, Chang-Gyu;Ahn, Jeong Joon
    • Korean journal of applied entomology
    • /
    • v.57 no.4
    • /
    • pp.261-269
    • /
    • 2018
  • The cowpea aphid Aphis craccivora Koch (Hemiptera: Aphididae) is a polyphagous species with a worldwide distribution. We investigated the temperature effects on development periods of nymphs, and the longevity and fecundity of apterous female of A. craccivora. The study was conducted at six constant temperatures of 10.0, 15.0, 20.0, 25, 30.0, and $32.5^{\circ}C$. A. craccivora developed successfully from nymph to adult stage at all temperatures subjected. The developmental rate of A. craccivora increased as temperature increased. The lower developmental threshold (LT) and thermal constant (K) of A. craccivora nymph stage were estimated by linear regression as $5.3^{\circ}C$ and 128.4 degree-days (DD), respectively. Lower and higher threshold temperatures (TL, TH and TH-TL, respectively) were calculated by the Sharpe_Schoolfield_Ikemoto (SSI) model as $17.0^{\circ}C$, $34.6^{\circ}C$ and $17.5^{\circ}C$. Developmental completion of nymph stages was described using a three-parameter Weibull function. Life table parameters were estimated. The intrinsic rate of increase was highest at $25^{\circ}C$, while the net reproductive rate was highest at $20^{\circ}C$. Biological characteristics of A. craccivora populations from different geographic areas were discussed.

Separation of Hydrocarbon Mixture Using (O/W)/O Emulsion Liquid Membrane ((O/W)/O 에멀젼형 액막을 이용한 탄화수소 혼합물의 분리)

  • Jeong, M.C.;Park, H.Y.;Oh, J.T.;Kim, J.K.;Shin, M.H.;Kim, W.S.
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.763-770
    • /
    • 1997
  • The separation of benzene-cyclohexane mixture using (O/W)/O emulsion liquid membrane was studied. The operating parameters which can affect the selectivity, benzene yield, and emulsion size distribution were examined and determined by the batch type operation. The unsteady state and steady state extraction behavior in continuous pulse stirred reactor(CPSR) were verified. The optimum conditions for benzene selectivity and yield in batch operation were as follows; emulsion mixing intensity 4000 rpm, Tween 80 concentration 0.4%, volume ratio of membrane phase to internal phase 0.75, volume ratio of dispersed phase to continuous phase 0.5, and permeation time 10 minutes, As impeller speed increased and the microdrop holdup decreased, the Sauter mean diameter decreased. Turbulence damping parameter of modified Calabrease correlation considering microdrop holdup was 2.28. The optimum conditions of continuous operation were as follows; agitation speed 300 rpm, pulse frequence 2 times/sec, flow rate of continuous phase 30ml/min, and flow rate of emulsion phase 12.0ml/min.

  • PDF

Germination Responses of Echinochloa crus - galli Seeds to Temperature (온도에 대한 돌피(Echinochloa crus-galli) 종자의 발아반응)

  • 이호준;성미선;류병혁
    • The Korean Journal of Ecology
    • /
    • v.17 no.3
    • /
    • pp.367-378
    • /
    • 1994
  • The germination responses of Echinochloa crus-galli (L.) Beauv. seeds to temperature were examined under the various thermal conditions. While almost all the seeds tested did not germinate immediately after collection, almost of the seeds which were stored for 7, 10, and 17 months showed very high germination percentages (85-95%) at their own constant temperatures between $16^{\circ}C\;and\;40^{\circ}C$. The total thermal time which was required for germination(10-70%) of Echinochloa crus-galli seeds ranged from 539Kh(degree Kelvin X hour) to 1,279Kh in accordance with the distribution function of thermal time, $F({\Theta})=1-[3D^{-3}({\Theta}-m+D)+1]^{-1/2}$, where m is 935Kh and D is 555Kh. Moist chilling treatment at $2^{\circ}C$ for 20 days increased the final germination percentage as well as the germination rate. In the increasing temperature(IT1 regime, E. crus-galli seeds started to germinate at $12^{\circ}C$. and showed greater germination rate with increasing temperatures, with the final germination percentage of 80%. On the other hand, in the decreasing temperature(DT1 regime, the seeds began to germinate at $12^{\circ}C$(10% germination) with the final germination percentage of 20%. An induced dormancy occurred at $4^{\circ}C$ in the DT regime.

  • PDF

Effect of Particulate Matter and Ash Amount on Pressure Drop and Flow Uniformity of Diesel Particulate Filter Reduction System (입자상물질과 Ash양이 디젤매연여과장치 내의 배압 및 유동균일도에 미치는 영향)

  • Kim, YunJi;Han, DanBee;Seo, TaeWon;Oh, KwangChul;Baek, YoungSoon
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.22-29
    • /
    • 2020
  • Recently, as the fine dust is increased and the emission regulations of diesel engines have been tightened, interest in diesel soot filtration devices has rapidly increased. There is specifically a demand for the technological development of higher diesel exhaust gas after-treatment device efficiency. As part of this, many studies were conducted to increase exhaust gas treatment efficiency by improving the flow uniformity of the exhaust gas in the diesel particulate filter (DPF) and reducing the pressure drop between the inlet and the outlet of DPF. In this study, the effects of pressure drop by the flow rate and temperature of exhaust gas, DPF I/O ratio, Ash, and PM amount in diesel reduction device were simulated via a 12" diameter DPF and diesel oxidation catalyst (DOC) using ANSYS Fluent. As the flow rate and temperature decreased, the pressure drop decreased, whereas the PM amount affected the pressure drop more than the ash amount and the pressure drop was lower in anisotropic DPF than isotropic DPF. In the case of DPF flow uniformity, it was constant regardless of the various variables of DPF. In ESC and ETC conditions, the filtration efficiency for PM was similar regardless of anisotropic and isotropic DPF, but the filtration efficiency for PN (particle number) was higher in anisotropic DPF than isotropic DPF.