• Title/Summary/Keyword: Distribution piping system

Search Result 40, Processing Time 0.027 seconds

The Study of Seafood Logistics Network with RFID (RFID를 이용한 수산물 유통 경로망 연구)

  • Kim, Oe-Yeong;Lee, Jong-Kun
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.2
    • /
    • pp.43-49
    • /
    • 2010
  • Form, increasing the income of fishermen and internationally competitive high value-added seafood merchandising consumers for the purpose of improving the reliability of the food as do Tongyeong Gyeongsangnam-piping of the high quality marine products traceability system for farm businesses. Real-time traceability of the seafood supply chain to manage RFID technologies and related IT technology was introduced in progress. In this study, real-time traceability of fish introduced to the features of RFID technology and to recognize its effects. And efficient distribution system of fish suggests ways to improve and execute simulation about supply chain.

Multispecies Interactions in Biofilms and Implications to Safety of Drinking Water Distribution System

  • Reuben, Rine Christopher;Roy, Pravas Chandra;Sarkar, Shovon Lal;Ha, Sang-Do;Jahid, Iqbal Kabir
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.473-486
    • /
    • 2019
  • In the aquatic environment, microorganisms are predominantly organized as biofilms. Biofilms are formed by the aggregation of microbial cells and are surrounded by a matrix of extracellular polymeric substances (EPS) secreted by the microbial cells. Biofilms are attached to various surfaces, such as the living tissues, indwelling medical devices, and piping of the industrial potable water system. Biofilms formed from a single species has been extensively studied. However, there is an increased research focus on multispecies biofilms in recent years. It is important to assess the microbial mechanisms underlying the regulation of multispecies biofilm formation to determine the drinking water microbial composition. These mechanisms contribute to the predominance of the best-adapted species in an aquatic environment. This review focuses on the interactions in the multispecies biofilms, such as coaggregation, co-metabolism, cross-species protection, jamming of quorum sensing, lateral gene transfer, synergism, and antagonism. Further, this review explores the dynamics and the factors favoring biofilm formation and pathogen transmission within the drinking water distribution systems. The understanding of the physiology and biodiversity of microbial species in the biofilm may aid in the development of novel biofilm control and drinking water disinfection processes.

DESIGN STUDY OF AN IHX SUPPORT STRUCTURE FOR A POOL-TYPE SODIUM-COOLED FAST REACTOR

  • Park, Chang-Gyu;Kim, Jong-Bum;Lee, Jae-Han
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1323-1332
    • /
    • 2009
  • The IHX (Intermediate Heat eXchanger) for a pool-type SFR (Sodium-cooled Fast Reactor) system transfers heat from the primary high temperature sodium to the intermediate cold temperature sodium. The upper structure of the IHX is a coaxial structure designed to form a flow path for both the secondary high temperature and low temperature sodium. The coaxial structure of the IHX consists of a central downcomer and riser for the incoming and outgoing intermediate sodium, respectively. The IHX of a pool-type SFR is supported at the upper surface of the reactor head with an IHX support structure that connects the IHX riser cylinder to the reactor head. The reactor head is generally maintained at the low temperature regime, but the riser cylinder is exposed in the elevated temperature region. The resultant complicated temperature distribution of the co-axial structure including the IHX support structure may induce a severe thermal stress distribution. In this study, the structural feasibility of the current upper support structure concept is investigated through a preliminary stress analysis and an alternative design concept to accommodate the IHTS (Intermediate Heat Transport System) piping expansion loads and severe thermal stress is proposed. Through the structural analysis it is found that the alternative design concept is effective in reducing the thermal stress and acquiring structural integrity.

Experiments on the Thermal Stratification in the Branch of NPP

  • Kim Sang Nyung;Hwang Seon Hong;Yoon Ki Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1206-1215
    • /
    • 2005
  • The thermal stratification phenomena, frequently occurring in the component of nuclear power plant system such as pressurizer surge line, steam generator inlet nozzle, safety injection system (SIS), and chemical and volume control system (CVCS), can cause through-wall cracks, thermal fatigue, unexpected piping displacement and dislocation, and pipe support damage. The phenomenon is one of the unaccounted load in the design stage. However, the load have been found to be serious as nuclear power plant operation experience accumulates. In particular, the thermal stratification by the turbulent penetration or valve leak in the SIS and SCS pipe line can lead these safety systems to failure by the thermal fatigue. Therefore in this study an 1/10 scaledowned experimental rig had been designed and installed. And a series of experimental works had been executed to measure the temperature distribution (thermal stratification) in these systems by the turbulent penetration, valve leak, and heat transfer through valve. The results provide very valuable informations such as turbulent penetration depth, the possibility of thermal stratification by the heat transfer through valve, etc. Also the results are expected to be useful to understand the thermal stratification in these systems, establish the thermal strati­fication criteria and validate the calculation results by CFD Codes such as Fluent, Phenix, CFX.

A Study on the Characteristics of Flow in the Metal Touch Ball Valve according to the Opening degree (볼밸브의 개폐각도에 따른 유동특성 분석)

  • An, Tae-Won;Han, Geun-Jo;Han, Dong-Seop;Lee, Seong-Wook
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.175-178
    • /
    • 2007
  • Valves has been used widely in various industries. There are many purposes for valve usage in a piping system. One of them is to control the flow rate. For a design of ball valves, it is important to know the characteristics of flows inside a ball valve. In this study, the computation fluid dynamics were conducted to observe flow velocity, flow coefficient and pressure distribution using CFX 10 according to the valve angles and uniform incoming velocity.

  • PDF

Crack Growth Analysis due to PWSCC in Dissimilar Metal Butt Weld for Reactor Piping Considering Hydrostatic and Normal Operating Conditions (수압시험 및 정상운전 하중을 고려한 원자로 배관 이종금속 맞대기 용접부 응력부식균열 성장 해석)

  • Lee, Hwee-Sueng;Huh, Nam-Su;Lee, Seung-Gun;Park, Heung-Bae;Lee, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.47-54
    • /
    • 2013
  • This study investigates the crack growth behavior due to primary water stress corrosion cracking (PWSCC) in the dissimilar metal butt weld of a reactor piping using Alloy 82/182. First, detailed finite element stress analyses were performed to predict the stress distribution of the dissimilar metal butt weld in which the hydrostatic and the normal operating loads as well as the weld residual stresses were considered to evaluate the stress redistribution due to mechanical loadings. Based on the stress distributions along the wall thickness of the dissimilar metal butt weld, the crack growth behavior of the postulated axial and circumferential cracks were predicted, from which the crack growth diagram due to PWSCC was proposed. The present results can be applied to predict the crack growth rate in the dissimilar metal butt weld of reactor piping due to PWSCC.

A Study on Process Design of Hot Oil Flushing System Using Oil-Nitrogen Gas Mixing Fluid (오일-질소가스 혼합유체를 이용한 고온 오일플러싱 시스템 공정설계에 관한 연구)

  • Lee, Yoon-Ho;Choi, Bu-Hong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.541-548
    • /
    • 2017
  • A theoretical study on gas-liquid two-phase flow flushing systemnitrogen gas to the oil used for existing flushing equipment was conducted on the basis of ISO code so as to improve performance of existing high-temperature oil flushing equipment used in ocean plant facility drying field. For study, we analyzed process simulation results mixed fluid mixing ratio, temperature, Reynolds number and liquid hold up affectcleaning performance after designing oil-nitrogen gas mixture flushing system process. As a result, as the volume flow rate of mixed fluid increases with the tube diameter the volume fraction of the gas phase constant, the liquid fraction difference value at the inlet and outlet of horizontal hydraulic piping increases. It was found that the phase distribution between oil and nitrogen gas bubbles varies depending on the position the pipe lengthdirection. This change in phase distribution is expected to have a significant impact on the clean performance of an oil-nitrogen gas mixture flushing system.

Loss Estimation of Steel Pipeline Damage in Los Angeles Using GIS (GIS를 이용한 로스엔젤레스에 매설된 강관 손상 평가)

  • Jeon, Sang-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.47-58
    • /
    • 2004
  • Steel Pipelines were located in hillside and mountain areas where landslides occurred during the Northridge earthquake. This paper describes the investigations that were performed to identify and locate the different types of steel pipeline construction in the system using GIS (Geographical Information System). The paper explores the damage correlations of steel pipelines with PGV (peak ground velocity) and investigates the areas subjected to the landslide effects during the Northridge earthquake. One noticeable finding is that the repair rates for steel distribution pipelines after the Northridge earthquake are higher than those of CI (cast iron) pipelines. The relatively high susceptibility of steel piping to damage during the Northridge earthquake may be explained in part by utility practices, such as using steel pipe for the highest internal pressures, and increased susceptibility to corrosion also appears to play a role in steel pipeline performance.

A Study on Cooling Performance of In-wheel Motor for Green Car (그린카용 인휠 모터의 냉각 성능에 관한 연구)

  • Jung, Jung-Hun;Kim, Sung-Chul;Hong, Jung-Pyo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.61-67
    • /
    • 2012
  • The in-wheel motor used in green car was designed and constructed for an electric direct-drive traction system. It is difficult to connect cooling water piping because the in-wheel motor is located within the wheel structure. In the air cooling structure for the in-wheel motor, a outer surface on the housing is provided with cooling grooves to increase the heat transfer area. In this study, we carried out the analysis on the fluid flow and thermal characteristics of the in-wheel motor under the effects of motor speed and heat generation. In order to check the problem of heat release, the analysis has been performed using conjugate heat transfer (conduction and convection). As a result, flow fields and temperature distribution inside the in-wheel motor were obtained for base speed condition (1250 rpm) and maximum speed condition (5000 rpm). Also, the thermo-flow characteristics analysis of in-wheel motor for vehicles was performed in consideration of ram air effect. Therefore, we checked the feasibility of the air cooling for the housing geometry having cooling grooves and investigated the cooling performance enhancement.

Effect of dissimilar metal SENB specimen width and crack length on stress intensity factor

  • Murthy, A. Ramachandra;Muthu Kumaran, M.;Saravanan, M.;Gandhi, P.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1579-1586
    • /
    • 2020
  • Dissimilar metal joints (DMJs) are more common in the application of piping system of many industries. A 2- D and 3-D finite element analysis (FEA) is carried out on dissimilar metal Single Edged Notch Bending (DMSENB) specimens fabricated from ferritic steel, austenitic steel and Inconel - 182 alloy to study the behavior of DMJs with constraints by using linear elastic fracture mechanics (LEFM) principles. Studies on DMSENB specimens are conducted with respect to (i) dissimilar metal joint width (DMJW) (geometrical constraints) (5 mm, 10 mm, 20 mm, 30 mm and 50 mm) (ii) strength mismatch (material constraints) and (iii) crack lengths (16 mm, 20 mm and 24 mm) to study the DMJ behavior. From the FEA investigation, it is observed that (i) SIF increases with increase of crack length and DMJWs (ii) significant constraint effect (geometry, crack tip and strength mismatch) is observed for DMJWs of 5 mm and 10 mm (iii) stress distribution at the interfaces of DMSENB specimen exhibits clear indication of strength mismatch (iv) 3-D FEA yields realistic behavior (v) constraint effect is found to be significant if DMJW is less than 20 mm and the ratio of specimen length to the DMJW is greater than 7.4.