• Title/Summary/Keyword: Distribution pipe

Search Result 620, Processing Time 0.025 seconds

Reliability Analysis for Probability of Pipe Breakage in Water Distribution System (상수관망의 파이프 파괴확률 산정을 위한 신뢰성 해석)

  • Kwon, Hyuk Jae;Lee, Cheol Eung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.609-617
    • /
    • 2008
  • Water pipes are supposed to deliver the predetermined demand safely to a certain point in water distribution system. However, pipe burst or crack can be happened due to so many reasons such as the water hammer, natural pipe ageing, external impact force, soil condition, and various environments of pipe installation. In the present study, the reliability model which can calculate the probability of pipe breakage was developed regarding unsteady effect such as water hammer. For the reliability model, reliability function was formulated by Barlow formula. AFDA method was applied to calculate the probability of pipe breakage. It was found that the statistical distribution for internal pressure among the random variables of reliability function has a good agreement with the Gumbel distribution after unsteady analysis was performed. Using the present model, the probability of pipe breakage was quantitatively calculated according to random variables such as the pipe diameter, thickness, allowable stress, and internal pressure. Furthermore, it was found that unsteady effect significantly increases the probability of pipe breakage. If this reliability model is used for the design of water distribution system, safe and economical design can be accomplished. And it also can be effectively used for the management and maintenance of water distribution system.

Stress Distribution of Buried Concrete Pipe Under Various Environmental Conditions

  • Lee, Janggeun;Kang, Jae Mo;Ban, Hoki;Moon, Changyeul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.65-72
    • /
    • 2016
  • There are numerous factors that affect stress distribution in a buried pipe, such as the shape, size, and stiffness of the pipe, its burial depth, and the stiffness of the surrounding soil. In addition, the pipe can benefit from the soil arching effect to some extent, through which the overburden and surcharge pressure at the crown can be carried by the adjacent soil. As a result, the buried pipe needs to support only a portion of the load that is not transferred to the adjacent soil. This paper presents numerical efforts to investigate the stress distribution in the buried concrete pipe under various environmental conditions. To that end, a nonlinear elasto-plastic model for backfill materials was implemented into finite element software by a user-defined subroutine (user material, or UMAT) to more precisely analyze the soil behavior surrounding a buried concrete pipe subjected to surface loading. In addition, three different backfill materials with a native soil were selected to examine the material-specific stress distribution in pipe. The environmental conditions considering in this study the loading effect and void effects were investigated using finite element method. The simulation results provide information on how the pressures are redistributed, and how the buried concrete pipe behaves under various environmental conditions.

A Methodology to Quantifying Benefit for Implementing Smart-Pipe to Lifeline Systems (라이프라인의 Smart-Pipe 시스템 도입을 위한 이익정량화 방안)

  • Jun, Hwan-Don;Kim, Joong-Hoon;Cho, Moon-Soo;Baek, Chun-Woo;Yoo, Do-Guen
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.61-66
    • /
    • 2008
  • As the water distribution system which is one of the critical lifeline system is deteriorated and pipe failures occur frequently, the more efficient pipe monitoring system becomes a critical issue in the water industry. One of the pipe monitoring systems is called "Smart-pipe System" which is permanent, comprehensive and an automated SIM (Structural Integrity Monitoring) system and has superiorities to existing monitoring system. To implement a smart-pipe system on a water distribution system, assessment of its indirect benefit obtaining from smartpipe such as the ratio of preventing water main failures must be preceded. However, only some researches on this field have been performed. In this paper, the concept of smart-pipe system is compared with the current monitoring systems for a water distribution system, and a method to quantify its benefit using the inconvenient time for customers is suggested. The suggested method was applied to a real water distribution system to estimate its applicability and benefit.

The Regulations and Guidelines for Management of Corrosive Water and Pipe Corrosion in Drinking Water Distribution System in North America (상수원 관망 부식 제어를 위한 부식성 수질 관리: 북미지역 관리 사례 및 국외 현황)

  • Kim, Minhee;Hyun, Seunghun;Lee, Won-Seok;Loretta, Y. Li
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.359-369
    • /
    • 2017
  • Water distribution systems supply drinking water to consumers' taps. Internal corrosion of metallic pipe used in drinking water distribution systems has reduced water quality and led to increased levels of toxic heavy metals such as lead, copper and nickel. These problems have been experienced to varying degrees by water utilities in many countries. North America has successfully managed and controlled pipe corrosion and corrosive water in water distribution system based on various policies, regulations and rules. Practical and engineering guidelines for evaluation of pipe corrosion and determination of treatment options are also provided to assist drinking water supplies. In addition, the corrosion mechanism in water distribution systems, such as the complex effects of physical and chemical parameters on the corrosion pipes has been improved to accurately predict corrosion rates of metallic pipes in actual water distribution systems. This paper reviews various regulations, policy statement, and treatment produces on controlling corrosion in drinking water distribution systems in US and Canada and then offers suggestion for management of corrosive water and pipe corrosion in drinking water distribution system in Korea.

determination of Optimum Pipe diameter Using Multi-Stage Iterative Method in Water Distribution system (다단계 반복기법을 이용한 관로시스템의 최적관경 결정)

  • Han, Geon-Yeon;Park, Jae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.327-335
    • /
    • 1998
  • The distribution network is an essential part of all water supply systems. The cost of this portion of any sizable water supply system may amount to most of the entire cost of the project. This study tried to reduce the cost of the distribution system through optimization in system design. To determine pipe diameter considered in water distribution system design, a iterative procedure linked the flow analysis model and optimization model was used. Linear theory was introduced to analyze flowrate and revised-simplex method based on linear programming is used to optimize pipe diameter. This model was applied to wter distribution system with 22 and 35 pipes, and rapidly determine optimized commercial pipe diameters. Keywords : water distribution system, revised simplex method, optimum pipe diameters.

  • PDF

Development and Applications of a Methodology and Computer Algorithms for Long-term Management of Water Distribution Pipe Systems (상수도 배수관로 시스템의 장기적 유지관리를 위한 방법론과 컴퓨터 알고리즘의 개발 및 적용)

  • Park, Suwan
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.356-366
    • /
    • 2007
  • In this paper a methodology is developed to prioritize replacement of water distribution pipes according to the economical efficiency of replacement and assess the long-term effects of water main replacement policies on water distribution systems. The methodology is implemented with MATLAB to develop a computer algorithm which is used to apply the methodology to a case study water distribution system. A pipe break prediction model is used to estimate future costs of pipe repair and replacement, and the economically optimal replacement time of a pipe is estimated by obtaining the time at which the present worth of the total costs of repair and replacement is minimum. The equation for estimating the present worth of the total cost is modified to reflect the fact that a pipe can be replaced in between of failure events. The results of the analyses show that about 9.5% of the pipes in the case study system is required to be replaced within the planning horizon. Analyses of the yearly pipe replacement requirements for the case study system are provided along with the compositions of the replacement. The effects of water main replacement policies, for which yearly replacement length scenario and yearly replacement budget scenario are used, during a planning horizon are simulated in terms of the predicted number of pipe failures and the saved repair costs.

A Study on the Estimating Burst Pressure Distributions for Reliability Assessment of API 5L X65 Pipes (API 5L X65 배관의 신뢰도 평가를 위한 파열압력 분포 추정에 관한 연구)

  • Kim, Seong-Jun;Kim, Dohyun;Kim, Cheolman;Kim, Woosik
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.4
    • /
    • pp.597-608
    • /
    • 2020
  • Purpose: The purpose of this paper is to present a probability distribution of the burst pressure of API 5L X65 pipes for the reliability assessment of corroded gas pipelines. Methods: Corrosion is a major cause of weakening the residual strength of the pipe. The mean residual strength on the corrosion defect can be obtained using the burst pressure code. However, in order to obtain the pipe reliability, a probability distribution of the burst pressure should be provided. This study is concerned with estimating the burst pressure distribution using Monte Carlo simulation. A response surface method is employed to represent the distribution parameter as a model of the corrosion defect size. Results: The experimental results suggest that the normal or Weibull distribution should be suitable as the probability distribution of the burst pressure. In particular, it was shown that the probability distribution parameters can be well predicted by using the depth and length of the corrosion defect. Conclusion: Given a corrosion defect on the pipe, its corresponding burst pressure distribution can be provided at instant. Subsequently, a reliability assessment of the pipe is conducted as well.

Study on the possible application of Vibrated and Rolled reinforced concrete pipe to vertical.crossing water distribution system (진동 및 전압 철근 콘크리트관의 종.횡단배수관 적용성 검토에 관한 연구)

  • Park Do-Kyong;Lee Myung-Kue;Yang Keek-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.2 s.20
    • /
    • pp.111-117
    • /
    • 2006
  • In case of carrying out vortical crossing water distribution system in expressways or general roads construction, VR(Vibrated and Rolled reinforced concrete) pipes are restricted because of their specification of reinforced spun concrete pipe or on-site made pipe. Therefore, in order to apply VR pipes to those constructions, through the structural behavior experiments of the pipes, VR pipes are compared and verified with reinforced spun concrete pipe and the results are obtained as the following. From the experiments and analyses of Pipe Stiffness(PS) of the pipes, cracking loading is approved to satisfy the KS regulations. Through a direct load test, the cracking loading strength and the maximum load test of VR pipe is larger compared with reinforced spun concrete pipe. Particularly, even if side weld is thin, there is no little change in the cracking strength of VR pipe. The results of the direct load test analysis show that the structural behavior of VR pipe is equivalent or higher compared with reinforced spun concrete pipe in performance and VR pipe could be used as the water distribution pipe for roads. In this study, through pipe stiffness, direct load test and load teat on earth, reinforced spun concrete pipe and VR pipe are compared. And as a result, the structural behavior of VR pipe is comprehensively excellent. From the structural behavior tests, VR pipe's section shows more thickness and has uniform characteristics so that VR pipe is considered more favorable than reinforced spun concrete pipe.

Analysis of Pipe-Burst effect in Water Distribution Network (상수관망의 관로파열 영향 해석)

  • Park, Jae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.665-675
    • /
    • 2002
  • It is very closely related with the reliability of the pipe network to predict pipe burst and diminish burst effect in water distribution system. Most of the engineers have not consider pipe layout and the effect of pipe burst in conservative pipe network design. In this study, The effect of pipe burst in the network is analyzed with respect to pipe network geometric topology and the method of increasing the system reliability is presented by reducing pipe-burst effect. In existing pipe system, it is only designed to the closed loop system but in case of each pipe burst, it cannot transmit appropriate water to consumers and occurs severe hydraulic head drop in many nodes. The techniques developed in this study allow proper pipe diameter and pipe layout to pipe system through the analysis of pipe-burst effect. Thus, when each pipe is bursted, pipe system is prevented from severe pressure head drop in demand nodes and can supply stable flowrate to consumer.

The Proportional Hazards Modeling for Consecutive Pipe Failures Based on an Individual Pipe Identification Method using the Characteristics of Water Distribution Pipes (상수도 배수관로의 특성에 따른 개별관로 정의 방법을 이용한 파손사건 사이의 비례위험모델링)

  • Park, Suwan;Kim, Jung Wook;Jun, Hwan Don
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.87-96
    • /
    • 2007
  • In this paper a methodology of identifying individual pipes according to the internal and external characteristics of pipe is developed, and the methodology is applied to a case study water distribution pipe break database. Using the newly defined individual pipes the hazard rates of the cast iron 6 inch pipes are modeled by implementing the proportional hazards modeling approach for consecutive pipe failures. The covariates to be considered in the modeling procedures are selected by considering the general availability of the data and the practical applicability of the modeling results. The individual cast iron 6 inch pipes are categorized into seven ordered survival time groups according to the total number of breaks recorded in a pipe to construct distinct proportional hazard model (PHM) for each survival time group (STG). The modeling results show that all of the PHMs have the hazard rate forms of the Weibull distribution. In addition, the estimated baseline survivor functions show that the survival probabilities of the STGs generally decrease as the number of break increases. It is found that STG I has an increasing hazard rate whereas the other STGs have decreasing hazard rates. Regarding the first failure the hazard ratio of spun-rigid and spun-flex cast iron pipes to pit cast iron pipes is estimated as 1.8 and 6.3, respectively. For the second or more failures the relative effects of pipe material/joint type on failure were not conclusive. The degree of land development affected pipe failure for STGs I, II, and V, and the average hazard ratio was estimated as 1.8. The effects of length on failure decreased as more breaks occur and the population in a GRID affected the hazard rate of the first pipe failure.