• 제목/요약/키워드: Distribution pipe

검색결과 620건 처리시간 0.023초

상수관망의 파이프 파괴확률 산정을 위한 신뢰성 해석 (Reliability Analysis for Probability of Pipe Breakage in Water Distribution System)

  • 권혁재;이철응
    • 상하수도학회지
    • /
    • 제22권6호
    • /
    • pp.609-617
    • /
    • 2008
  • Water pipes are supposed to deliver the predetermined demand safely to a certain point in water distribution system. However, pipe burst or crack can be happened due to so many reasons such as the water hammer, natural pipe ageing, external impact force, soil condition, and various environments of pipe installation. In the present study, the reliability model which can calculate the probability of pipe breakage was developed regarding unsteady effect such as water hammer. For the reliability model, reliability function was formulated by Barlow formula. AFDA method was applied to calculate the probability of pipe breakage. It was found that the statistical distribution for internal pressure among the random variables of reliability function has a good agreement with the Gumbel distribution after unsteady analysis was performed. Using the present model, the probability of pipe breakage was quantitatively calculated according to random variables such as the pipe diameter, thickness, allowable stress, and internal pressure. Furthermore, it was found that unsteady effect significantly increases the probability of pipe breakage. If this reliability model is used for the design of water distribution system, safe and economical design can be accomplished. And it also can be effectively used for the management and maintenance of water distribution system.

Stress Distribution of Buried Concrete Pipe Under Various Environmental Conditions

  • Lee, Janggeun;Kang, Jae Mo;Ban, Hoki;Moon, Changyeul
    • 한국지반환경공학회 논문집
    • /
    • 제17권12호
    • /
    • pp.65-72
    • /
    • 2016
  • There are numerous factors that affect stress distribution in a buried pipe, such as the shape, size, and stiffness of the pipe, its burial depth, and the stiffness of the surrounding soil. In addition, the pipe can benefit from the soil arching effect to some extent, through which the overburden and surcharge pressure at the crown can be carried by the adjacent soil. As a result, the buried pipe needs to support only a portion of the load that is not transferred to the adjacent soil. This paper presents numerical efforts to investigate the stress distribution in the buried concrete pipe under various environmental conditions. To that end, a nonlinear elasto-plastic model for backfill materials was implemented into finite element software by a user-defined subroutine (user material, or UMAT) to more precisely analyze the soil behavior surrounding a buried concrete pipe subjected to surface loading. In addition, three different backfill materials with a native soil were selected to examine the material-specific stress distribution in pipe. The environmental conditions considering in this study the loading effect and void effects were investigated using finite element method. The simulation results provide information on how the pressures are redistributed, and how the buried concrete pipe behaves under various environmental conditions.

라이프라인의 Smart-Pipe 시스템 도입을 위한 이익정량화 방안 (A Methodology to Quantifying Benefit for Implementing Smart-Pipe to Lifeline Systems)

  • 전환돈;김중훈;조문수;백천우;유도근
    • 한국방재학회 논문집
    • /
    • 제8권4호
    • /
    • pp.61-66
    • /
    • 2008
  • 상수관망의 노후화에 따른 잦은 파괴로 인해 보다 효율적인 상수관망 모니터링시스템 구축이 중요한 문제가 되었다. 상수관망의 모니터링 시스템의 하나인 "Smart-Pipe 시스템"은 영구적이며 포괄적인 자동화된 형태의 SIM 시스템으로 기존의 모니터링 시스템에 비해 많은 장점을 가지고 있다. Smart-pipe를 도입하기 위해서는 상수관 파괴를 미리 예측하여 갑작스러운 상수관 파괴를 막는 것과 같이 smart-pipe 설치를 통해 발생하는 간접적 이익의 정량화가 우선되어야 한다. 그러나 이와 관련된 연구는 국내외적으로 매우 미비한 실정이다. 본 연구에서는 smart-pipe의 개념을 기존 상수관 모니터링 시스템과 비교하였으며 smartpipe 설치에 따른 이익을 수용가불편시간으로 정량화하는 방안을 제시하였다. 제안된 방법을 고양시의 상수관망에 적용하여 적용성을 검증하였으며, smart-pipe시스템의 도입을 위한 기초자료로 활용될 수 있을 것으로 판단되었다.

상수원 관망 부식 제어를 위한 부식성 수질 관리: 북미지역 관리 사례 및 국외 현황 (The Regulations and Guidelines for Management of Corrosive Water and Pipe Corrosion in Drinking Water Distribution System in North America)

  • 김민희;현승훈;이원석
    • 한국물환경학회지
    • /
    • 제33권3호
    • /
    • pp.359-369
    • /
    • 2017
  • Water distribution systems supply drinking water to consumers' taps. Internal corrosion of metallic pipe used in drinking water distribution systems has reduced water quality and led to increased levels of toxic heavy metals such as lead, copper and nickel. These problems have been experienced to varying degrees by water utilities in many countries. North America has successfully managed and controlled pipe corrosion and corrosive water in water distribution system based on various policies, regulations and rules. Practical and engineering guidelines for evaluation of pipe corrosion and determination of treatment options are also provided to assist drinking water supplies. In addition, the corrosion mechanism in water distribution systems, such as the complex effects of physical and chemical parameters on the corrosion pipes has been improved to accurately predict corrosion rates of metallic pipes in actual water distribution systems. This paper reviews various regulations, policy statement, and treatment produces on controlling corrosion in drinking water distribution systems in US and Canada and then offers suggestion for management of corrosive water and pipe corrosion in drinking water distribution system in Korea.

다단계 반복기법을 이용한 관로시스템의 최적관경 결정 (determination of Optimum Pipe diameter Using Multi-Stage Iterative Method in Water Distribution system)

  • 한건연;박재홍
    • 한국수자원학회논문집
    • /
    • 제31권3호
    • /
    • pp.327-335
    • /
    • 1998
  • 상수관망은 상수공급시스템에서 핵심적인 부분이다. 주어진 상수공급시스템에서 배수관망에 대한 비용은 사업전체 비용에 대한 대부분을 차지하고 있다. 관망에 대한 설계과정 중에서 최적화기법을 사용하여 비용을 절감하기 위한 연구가 시도되었다. 주어진 상수관망 시스템의 설계시 고려되는 관경의 결정을 위해 유량해석과 최적화 기법이 연계되어 해석하는 반복기법이 적용되었다. 유량해석을 위해서 선형화기법이 되입되었고 관경의 최적화를 위해서 선형계획법에 기초한 개정 단체법을 이용하였다. 22개 관로와 35개 관로를 가진 실제관망에 본 모형을 적용한 결과 짧은 계산시간으로 최적화된 상용관을 결정할 수 있었다.

  • PDF

상수도 배수관로 시스템의 장기적 유지관리를 위한 방법론과 컴퓨터 알고리즘의 개발 및 적용 (Development and Applications of a Methodology and Computer Algorithms for Long-term Management of Water Distribution Pipe Systems)

  • 박수완
    • 한국물환경학회지
    • /
    • 제23권3호
    • /
    • pp.356-366
    • /
    • 2007
  • In this paper a methodology is developed to prioritize replacement of water distribution pipes according to the economical efficiency of replacement and assess the long-term effects of water main replacement policies on water distribution systems. The methodology is implemented with MATLAB to develop a computer algorithm which is used to apply the methodology to a case study water distribution system. A pipe break prediction model is used to estimate future costs of pipe repair and replacement, and the economically optimal replacement time of a pipe is estimated by obtaining the time at which the present worth of the total costs of repair and replacement is minimum. The equation for estimating the present worth of the total cost is modified to reflect the fact that a pipe can be replaced in between of failure events. The results of the analyses show that about 9.5% of the pipes in the case study system is required to be replaced within the planning horizon. Analyses of the yearly pipe replacement requirements for the case study system are provided along with the compositions of the replacement. The effects of water main replacement policies, for which yearly replacement length scenario and yearly replacement budget scenario are used, during a planning horizon are simulated in terms of the predicted number of pipe failures and the saved repair costs.

API 5L X65 배관의 신뢰도 평가를 위한 파열압력 분포 추정에 관한 연구 (A Study on the Estimating Burst Pressure Distributions for Reliability Assessment of API 5L X65 Pipes)

  • 김성준;김도현;김철만;김우식
    • 품질경영학회지
    • /
    • 제48권4호
    • /
    • pp.597-608
    • /
    • 2020
  • Purpose: The purpose of this paper is to present a probability distribution of the burst pressure of API 5L X65 pipes for the reliability assessment of corroded gas pipelines. Methods: Corrosion is a major cause of weakening the residual strength of the pipe. The mean residual strength on the corrosion defect can be obtained using the burst pressure code. However, in order to obtain the pipe reliability, a probability distribution of the burst pressure should be provided. This study is concerned with estimating the burst pressure distribution using Monte Carlo simulation. A response surface method is employed to represent the distribution parameter as a model of the corrosion defect size. Results: The experimental results suggest that the normal or Weibull distribution should be suitable as the probability distribution of the burst pressure. In particular, it was shown that the probability distribution parameters can be well predicted by using the depth and length of the corrosion defect. Conclusion: Given a corrosion defect on the pipe, its corresponding burst pressure distribution can be provided at instant. Subsequently, a reliability assessment of the pipe is conducted as well.

진동 및 전압 철근 콘크리트관의 종.횡단배수관 적용성 검토에 관한 연구 (Study on the possible application of Vibrated and Rolled reinforced concrete pipe to vertical.crossing water distribution system)

  • 박도경;이명규;양극영
    • 한국건축시공학회지
    • /
    • 제6권2호
    • /
    • pp.111-117
    • /
    • 2006
  • In case of carrying out vortical crossing water distribution system in expressways or general roads construction, VR(Vibrated and Rolled reinforced concrete) pipes are restricted because of their specification of reinforced spun concrete pipe or on-site made pipe. Therefore, in order to apply VR pipes to those constructions, through the structural behavior experiments of the pipes, VR pipes are compared and verified with reinforced spun concrete pipe and the results are obtained as the following. From the experiments and analyses of Pipe Stiffness(PS) of the pipes, cracking loading is approved to satisfy the KS regulations. Through a direct load test, the cracking loading strength and the maximum load test of VR pipe is larger compared with reinforced spun concrete pipe. Particularly, even if side weld is thin, there is no little change in the cracking strength of VR pipe. The results of the direct load test analysis show that the structural behavior of VR pipe is equivalent or higher compared with reinforced spun concrete pipe in performance and VR pipe could be used as the water distribution pipe for roads. In this study, through pipe stiffness, direct load test and load teat on earth, reinforced spun concrete pipe and VR pipe are compared. And as a result, the structural behavior of VR pipe is comprehensively excellent. From the structural behavior tests, VR pipe's section shows more thickness and has uniform characteristics so that VR pipe is considered more favorable than reinforced spun concrete pipe.

상수관망의 관로파열 영향 해석 (Analysis of Pipe-Burst effect in Water Distribution Network)

  • 박재홍
    • 한국수자원학회논문집
    • /
    • 제35권6호
    • /
    • pp.665-675
    • /
    • 2002
  • 상수관망에서 관로파열을 예측하고 파열영향을 감소시키는 작업은 관망의 신뢰도와 밀접한 관계가 있다. 기존의 상수관망의 설계에서는 관로의 배치 및 각 관로에 대한 수리학적 능력 및 파열에 대한 영향이 고려되지 않았다. 본 연구에서는 도학을 이용하여 상수관망의 기하학적 구성상태에 따른 관로 파열에 대한 영향을 예측하고 영향을 감소시켜 상수관망의 신뢰도를 증가시킬 수 있는 방법을 제시하였다. 기존의 상수관망은 폐합관로를 이루고 있지만 특정관로가 파열되었을 경우 적정한 유량공급이 불가능하여 관망의 대부분의 절점에 심각한 수두감소와 같은 부작용이 발생할 수 있었다. 본 연구에서 개발된 관로파괴 영향해석 기법을 이용하여 관망 설계시 적절한 관경 및 관로를 배치를 구성하여 관로 파괴시 발생하는 수요절점에서의 극단적인 수두감소를 극복할 수 있었고 사용자들에게 안정적인 유량공급이 가능하여 보다 신뢰성 있는 상수관망 시스템이 될 수 있었다.

상수도 배수관로의 특성에 따른 개별관로 정의 방법을 이용한 파손사건 사이의 비례위험모델링 (The Proportional Hazards Modeling for Consecutive Pipe Failures Based on an Individual Pipe Identification Method using the Characteristics of Water Distribution Pipes)

  • 박수완;김정욱;전환돈
    • 한국물환경학회지
    • /
    • 제23권1호
    • /
    • pp.87-96
    • /
    • 2007
  • In this paper a methodology of identifying individual pipes according to the internal and external characteristics of pipe is developed, and the methodology is applied to a case study water distribution pipe break database. Using the newly defined individual pipes the hazard rates of the cast iron 6 inch pipes are modeled by implementing the proportional hazards modeling approach for consecutive pipe failures. The covariates to be considered in the modeling procedures are selected by considering the general availability of the data and the practical applicability of the modeling results. The individual cast iron 6 inch pipes are categorized into seven ordered survival time groups according to the total number of breaks recorded in a pipe to construct distinct proportional hazard model (PHM) for each survival time group (STG). The modeling results show that all of the PHMs have the hazard rate forms of the Weibull distribution. In addition, the estimated baseline survivor functions show that the survival probabilities of the STGs generally decrease as the number of break increases. It is found that STG I has an increasing hazard rate whereas the other STGs have decreasing hazard rates. Regarding the first failure the hazard ratio of spun-rigid and spun-flex cast iron pipes to pit cast iron pipes is estimated as 1.8 and 6.3, respectively. For the second or more failures the relative effects of pipe material/joint type on failure were not conclusive. The degree of land development affected pipe failure for STGs I, II, and V, and the average hazard ratio was estimated as 1.8. The effects of length on failure decreased as more breaks occur and the population in a GRID affected the hazard rate of the first pipe failure.