• Title/Summary/Keyword: Distribution of refrigerant flow

Search Result 51, Processing Time 0.021 seconds

Characteristics of T-phase flow distribution and pressure drop in a horizontal T-type evaporator tube (수평 T형 증발관내 2상류의 유량분배 및 압력강하 특성)

  • 박종훈;조금남;조홍기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.658-668
    • /
    • 1999
  • The objective of the present study is to investigate the effect of experimental parameters on the hydrodynamic characteristics in a horizontal tee-type evaporator using R-22. The experimental apparatus consisted of an unheated tee-type test section, a liquid-vapor separator, a preheated, mass flow meters, a plate heat exchanger, pump, and other measurement devices. The experimental parameters were mass flux(500 and 600kg/$m^2$s), inlet quality(0.1~0.3) and separation ratio(0.3~0.7). Absolute pressure at the inlet of the test section was 0.652 MPa. The branch-to-inlet inner diameter ratio was 0.61. Pressure gradient at the branch section was larger than that at the run section at the same separation ratio. Pressure drop per unit length increased at the run section and decreased at the branch section as the separation ratio increased. Pressure drop predicted by the separated flow model agreed with experimental data within -35 to +16%. Generally, predicted values showed similar trend with the data. Mass flow ratio of vapor refrigerant was affected by the inlet quality more than the mass flux.

  • PDF

Effects of Casing Shape on the Performance of a Small-sized Centrifugal Compressor

  • Kim, D.W.;Kim, H.S.;Kim, Youn-J.
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.3
    • /
    • pp.132-139
    • /
    • 2003
  • The effects of casing shapes on the performance and the interaction between an impeller and a casing in a small-sized centrifugal compressor are investigated. Especially, numerical analyses are conducted for the centrifugal compressor with both a circular casing and a volute one. The optimum design for each element (i.e., impeller, diffuser and casing) is important to develop an efficient and compact compressor using alternative refrigerant as working fluids. Typical rotating speed of the compressor is in the range of 40,000∼45,000 rpm. The impeller has backswept blades due to tip clearance and a vane diffuser has wedge type. In order to predict the flow pattern inside an entire impeller, vaneless diffuser and casing, calculations with multiple frames of reference method between the rotating and stationery parts of the domain are carried out. For computations of compressible turbulent flow fields, the continuity and time-averaged Navier-Stokes equations are employed. To evaluate the performance of two types of casings, the static pressure recovery and loss coefficients are obtained for various flow rates. Also, static pressure distributions around casings are studied for different casing shapes, which are very important to predict the distribution of radial load. The static pressure around the casing and pressure difference between the inlet and outlet of the compressor are measured for the circular casing.

Prediction of condensation heat transfer coefficients inside horizontal tube in annular flow regime (환상유동 영역에서의 수평관내 응축 열전달계수 예측)

  • Kwak, Kyung-Min;Bae, Chul-Ho;Jung, Mo;Lee, Sang-Chun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.732-742
    • /
    • 1998
  • Prediction method for heat transfer coefficients in a horizontal smooth tube with forced convection condensation is proposed. In this paper, the analogy between momentum and heat transfer was applied to an annular flow regime and the logarithmic velocity distribution is applied to describe the velocity profile within the liquid film. Prediction results are compared with those of experimental ones. The test refrigerants are R113, R22, R134a, R407C(R33/R125/R134a, 23/25/52 wt%), R410A(R32/R125, 50/50 wt%) and R134a+R123(R134a/R123, 85.5/14.5 wt%) which are used under operating conditions in a condenser of air-conditioner. The proposed prediction method shows good agreement with experimental data within$\pm 30%$ for pure refrigerants. For the mixture refrigerants including the ternary mixture refrigerant R407C, condensation heat transfer from this study are higher than those from experiments. By correcting the constant in two-phase frictional multiplier, the predicated heat transfer coefficients become similar to the experimental results.

  • PDF

Effects on Refrigerant Maldistribution on the Performance of Evaporator

  • Lee, Jin-Ho;Kim, Chang-Duk;Byun, Ju-Suk;Jang, Tae-Sa
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.2
    • /
    • pp.107-118
    • /
    • 2005
  • An experimental investigation was made to study two-phase flow distribution in a T-type distributor of slit fin-and-tube heat exchanger using R-22. Experiments were carried out under the conditions of saturation temperature of $5^{\circ}C$ and mass flow rate varying from 0.6 to 1.2kg/min. The inlet air has dry bulb temperature of $27^{\circ}C$, relative humidity of 50% and air velocity varying from 0.63 to 1.71m/s. A comparison was made between the predictions from the previously proposed tube-by-tube method and the present experimental data for the heat transfer rate of evaporator. Results show that $82.5\%$ increase of air velocity is needed for T-type distributor with four outlet branches than that of two outlet branches under the superheat of $5^{\circ}C$, which resulted in increasing of air-side pressure drop of $130\%$ for the former as compared to the latter.

A Study on the Helically Coiled Heat Exchanger of Small Diameter Tubes (극세관 헬리컬 코일형 열교환기에 관한 연구)

  • Kim, Ju-Won;Kim, Jeong-Hun;Kim, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1492-1499
    • /
    • 2001
  • In order to develop the compact and flexible heat exchangers, we made the helically coiled heat exchangers. They can be manufactured with small diameter copper tubes without the need for fins; inner diameter=1.0 mm, straight tube length=1.5 m. The experiments were carried out with the following conditions; evaporation pressure=0.6 MPa, air velocity=0.7 ∼ 1.7 m/s, and working fluid=R-22. Pressure drop and heat transfer coefficient of heat exchangers were experimented according to the air velocity. The results of heat transfer coefficient show a 35% beneficial increase fur these heat exchangers over the other covered fin-tube heat exchangers. A cooling capacity of about 3 kW was obtained with an air velocity of 1.5 m/s. The distribution header has also been designed fur efficient distribution of refrigerant flow.

CFD Study for the Design of Coolant Path in Cryogenic Etch Chuck

  • Jo, Soo Hyun;Han, Ji Hee;Kim, Jong Oh;Han, Hwi;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.92-97
    • /
    • 2021
  • The importance of processes in cryogenic environments is increasing in a way to address problems such as critical dimension (CD) narrow and bottlenecks in micro-processing. Accordingly, in this paper, we proceed with the design and analysis of Electrostatic Chuck(ESC) and Coolant in cryogenic environments, and present optimal model conditions to provide the temperature distribution analysis of ESC in these environments and the appropriate optimal design. The wafer temperature uniformity was selected as the reference model that the operating conditions of the refrigerant of the liquid nitrogen in the doubled aluminum path were excellent. Design of simulation (DOS) was carried out based on the wheel settings within the selected reference model and the classification of three mass flow and diameter case, respectively. The comparison between factors with p-value less than 0.05 indicates that the optimal design point is when five turns of coolant have a flow rate of 0.3 kg/s and a diameter of 12 mm. ANOVA determines the interactions between the above factor, indicating that mass flow is the most significant among the parameters of interests. In variable selection procedure, Case 2 was also determined to be superior through the two-Sample T-Test of the mean and variance values by dividing five coolant wheels into two (Case 1 : 2+3, Case 2: 3+2). Finally, heat transfer analysis processes such as final difference method (FDM) and heat transfer were also performed to demonstrate the feasibility and adequacy of the analysis process.

Evaporator Thermal Performance Prediction on Automotive Air Conditioning System (자동차 공조장치용 증발기의 전열 성능 예측)

  • Kim, J.S.;Kang, J.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.4
    • /
    • pp.297-305
    • /
    • 1991
  • Recently, automotive air conditioning system manufacturers have been made a great efforts on the system compactness and high efficiency. This growing interest comes improvements in evaporator thermal performance, one of the most important factors affecting the performance of air conditioning system. In order to improve design of compact type evaporator, this study executes performs to develop a computer program for evaporator thermal performance prediction of automotive air conditioning system. The brief summaries of this study are as follows: 1) To predict the overall thermal performance of serpentine type evaporator, the new simulating method is developed. 2) The calculations are performed as functions of oil mass concentration and refrigerant two-phase distribution at inlet manifold of evaporator. 3) The validity of this simulating program is confirmed by comparing the predicted thermal performance results to experimental results of practical available evaporator. 4) Based on these results, suggestions are made to improve the thermal performance of evaporator.

  • PDF

Study on Development of High Performance Evaporator for Automotive Air Conditioner (자동차 공조용 증발기의 고성능화에 관한 연구)

  • Kang, J.K.;Kim, K.H.;Park, T.Y.;Kim, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.73-80
    • /
    • 1995
  • The object of the present study is to develop a high performance evaporator for automotive air conditioner. The experiment has been conducted on evaporative heat transfer coefficient inside a plate type heat exchanger with a sharp 180-degree turn flow. The test plates have different formed surface, cross-ribbed channel and elliptical-ribbed channel. Also experimental study has been performed to determine optimal design in elliptical-ribbed plate heat exchanger with different turn clearance. In addition to the above experiments, refrigerant behavior and surface temperature distribution in the plate heat exchanger were observed using color thermoviewer(infrared thermometer). In this experiment, working fluid was used R-12 and test conditions were as follows : (1) saturation pressure of $2.116kg/cm^2$, (2) mass fluxes of 40 to $70kg/m^2s$, (3) heat fluxes of 4,500 to $7,300W/m^2$, (4) inlet quality of 0.1 to 0.7. The results indicated that the evaporative heat transfer coefficient of an elliptical-ribbed plate heat exchanger was higher than that of cross-ribbed plate heat exchanger. Also optimal turn clearance in an elliptical-ribbed plate heat exchanger was determined.

  • PDF

Structural Stability Analysis of One-Touch Insertion Type Pipe Joint for Refrigerant (냉매용 원터치 삽입식 파이프 조인트의 안전성 구조해석)

  • Kim, Eun-young;Park, Dong-sam
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.3
    • /
    • pp.542-549
    • /
    • 2022
  • Purpose: Pipes are widely used as applied devices in many industrial fields such as machinery, electronics, electricity, and plants, and are also widely used in safety-related fields such as firefighting and chemistry. With the diversification of products, the importance of technology in the piping field is also increasing. In particular, when changing the existing copper pipe to stainless steel, it is necessary to evaluate safety and flow characteristics through structural analysis or flow analysis. Method: This study investigated the structural stability of the 6.35 and 15.88 socket models, which are integrated insert type connectors developed by a company, using FEM. For structural analysis, HyperMesh as pre-processor, HYPER VIEW as post-processor, and LS-DYNA as solver were used. Result: In the case of 6.35 socket, the maximum stresses at hook, holder and hinge were 95.02MPa, 19.59MPa and 44.01MPa, respectively, and in case of 15.88 socket, it was 127.7 MPa, 40.09MPa and 45.23MPa, respectively. Conclusion: Comparing the stress distribution of the two socket models, the stress in the 15.88 socket, which has a relatively large outer diameter, appears to be large overall, but it is significantly lower than the yield stress of each material, indicating that there is no problem in structural safety in both models.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2008 (설비공학 분야의 최근 연구 동향: 2008년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il;Choi, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.715-732
    • /
    • 2009
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2008. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends in thermal and fluid engineering have been surveyed in the categories of general fluid flow, fluid machinery and piping, new and renewable energy, and fire. Well-developed CFD technologies were widely applied in developing facilities and their systems. New research topics include fire, fuel cell, and solar energy. Research was mainly focused on flow distribution and optimization in the fields of fluid machinery and piping. Topics related to the development of fans and compressors had been popular, but were no longer investigated widely. Research papers on micro heat exchangers using nanofluids and micro pumps were also not presented during this period. There were some studies on thermal reliability and performance in the fields of new and renewable energy. Numerical simulations of smoke ventilation and the spread of fire were the main topics in the field of fire. (2) Research works on heat transfer presented in 2008 have been reviewed in the categories of heat transfer characteristics, industrial heat exchangers, and ground heat exchangers. Research on heat transfer characteristics included thermal transport in cryogenic vessels, dish solar collectors, radiative thermal reflectors, variable conductance heat pipes, and flow condensation and evaporation of refrigerants. In the area of industrial heat exchangers, examined are research on micro-channel plate heat exchangers, liquid cooled cold plates, fin-tube heat exchangers, and frost behavior of heat exchanger fins. Measurements on ground thermal conductivity and on the thermal diffusion characteristics of ground heat exchangers were reported. (3) In the field of refrigeration, many studies were presented on simultaneous heating and cooling heat pump systems. Switching between various operation modes and optimizing the refrigerant charge were considered in this research. Studies of heat pump systems using unutilized energy sources such as sewage water and river water were reported. Evaporative cooling was studied both theoretically and experimentally as a potential alternative to the conventional methods. (4) Research papers on building facilities have been reviewed and divided into studies on heat and cold sources, air conditioning and air cleaning, ventilation, automatic control of heat sources with piping systems, and sound reduction in hydraulic turbine dynamo rooms. In particular, considered were efficient and effective uses of energy resulting in reduced environmental pollution and operating costs. (5) In the field of building environments, many studies focused on health and comfort. Ventilation. system performance was considered to be important in improving indoor air conditions. Due to high oil prices, various tests were planned to examine building energy consumption and to cut life cycle costs.