• Title/Summary/Keyword: Distribution generator

Search Result 547, Processing Time 0.028 seconds

The Concepts of Montage in Somatosensory Evoked Potentials (체성감각 유발 전위에서 montage에 대한 개념)

  • Cha, Jae-Kwan;Kim, Seung-Hyun
    • Annals of Clinical Neurophysiology
    • /
    • v.1 no.2
    • /
    • pp.160-167
    • /
    • 1999
  • Although somatosensory evoked potentials(SSEPs) have been utilized as the useful diagnostic tools in evaluating the wide variety of pathological conditions, such as focal lesions affecting the somatosensory pathways, demyelinating diseases, and detecting the clinically occult abnormality, their neural generators is still considerably uncertain. To appreciate the basis for uncertainties about the origins of SSEPs, consider criteria that must be met to establish a causal relationship between activity in a neural structure and a spine/ scalp-recorded potential. Electrode locations and channel derivations for SSEPs recordings are based on two principles:(1) the waveforms are best recorded from electrode sites on the body surface closest to the presumed generator sources along the somatosensory pathways, and(2) studies of the potential-field distribution of each waveform of interest dictate the best techniques to be used. In this article, authors will describe followings focused on ;(1) the concepts of near field potentials(NFPs) and far field potentials(FFPs) - the voltage of NFPs is highly dependent upon recording electrode position, FFPs are unlike NFPs in that they are widely distributed, their latencies and amplitudes are independent of recording electrode.(2) appropriate montage settings to detect the significant potentials in the median nerve and posterior tibial nerve SSEPs(3) neural generators of various potentials(P9, N13, P14, N18, N20, P37) and their clinical significance in interpretating the results of SSEPs. Especially, Characteristics of N18(longduration, small superimposed inflection) suggested that N18 is a complex wave with multiple generators including brainstem structures and thalamic nuclei. And N18 might be used as the parameter of braindeath. Precise understanding on these facts provide an adequate basis utilizing SSEPs for numerous clinical purposes.

  • PDF

Vibration Characteristics of Corrugated Fiberboard Boxes for Packages of Pears (배 골판지 포장상자의 진동특성)

  • 김만수;정현모
    • Journal of Biosystems Engineering
    • /
    • v.27 no.5
    • /
    • pp.391-398
    • /
    • 2002
  • During handling unitized products, they are subjected to a variety of environmental hazards. Shock and vibration hazards are generally considered the most damaging of the environmental hazards on a product and it may encounter while passing through the distribution environment. A major cause of shock damage to products is drops during manual handling. The increasing use of unitization of pallets has been resulted in a reduction of the shock hazards. This has caused an increasing interest in research focused on vibration caused dam age. Damage to the product by the vibration most often occurs when a product or a product component has a natural frequency that falls within the range of the forcing frequencies of the particular mode of transportation being used. Transportation vibration is also a major cause of fruit and vegetable quality loss due to mechanical damage. This study was conducted to determine the vibration characteristics of the corrugated fiberboard bones for packages of pears, and to investigate the degree of vibration injury of the pears in the boxes during the simulated transportation environment. The vibration tests were performed on an electrohydraulic vibration exciter. The input acceleration to exciter was fixed at 0.25 G for a single container resonance test and 0.5 G for the vertical stacked container over the frequency range from 3 to 100 Hz. Function generator (HP-33120A) was connected by wire to the vibration exciter for controlling the input acceleration at a continuous logarithmic sweep rate of 1.0 octave per min. The peak frequency and acceleration on the single box test were 22.02 Hz, 1.5425 G respectively, and these values on the vertical stacked boxes were observed from the bottom box 19.02, 18.14, 16.62 and 15.40 Hz and 2.2987, 3.7654. 5.6087, and 7.9582 G, respectively. The pear in the bottom box had a slightly higher damage level than the fruit packed in the other stacked boxes. It is desirable that the package and transportation system has to be so designed that 15∼20 Hz frequency will not occur during the transportation environment.

The Implementation of Load Resistance Measurement System using Time-Frequency Domain Reflectometry (시간-주파수 영역 반사파 계측방법을 이용한 부하 저항 측정 시스템 구현)

  • Kwak, Ki-Seok;Park, Tae-Geun;Yoon, Tae-Sung;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.10
    • /
    • pp.435-442
    • /
    • 2006
  • One of the most important topics about the safety of electrical and electronic system is the reliability of the wiring system. The Time-Frequency Domain Reflectometry(TFDR) is a state-of-the-art system for detecting and estimating of the fault on a wiring. In this paper, We've considered the load resistance measurement on a coaxial cable using TFDR in a way of expanded application. The TFDR system was built using commercial Pci extensions for Instrumentation(PXI) and LabVIEW. The proposed real time TFDR system consisted of the reference signal design, signal generation, signal acquisition, algorithm execution and results display part. To implement real time system, all of the parts were programmed by the LabVIEW which is one of the graphical programming languages. Using the application software implemented by the LabVIEW, we were able to design a proper reference signal which is suitable for target cable and control not only the arbitrary waveform generator in the signal generation part but alto the digital storage oscilloscope in the signal acquisition part. By using the TFDR real time system with the terminal resistor on the target cable, we carried out load impedance measurement experiments. The experimental results showed that the proposed system are able not only to detect the location of impedance discontinuity on the cable but also to estimate the load resistance with high accuracy.

Privacy Amplification of Correlated Key Decryption over Public Channels (공개 채널을 통한 상관 키 분산 암호화의 프라이버시 증폭)

  • Lee, Sun-Yui;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.73-78
    • /
    • 2018
  • In this paper, we consider a system where multiple sources are encrypted in separated nodes and sent through their respective public communication channels into a joint sink node. We are interested at the problem on protecting the security of an already existing system such above, which is found out to have correlated encryption keys. In particular, we focus on finding a solution without introducing additional secret keys and with minimal modification to minimize the cost and the risk of bringing down an already running system. We propose a solution under a security model where an eavesdropper obtains all ciphertexts, i.e., encrypted sources, by accessing available public communication channels. Our main technique is to use encoders of universal function to encode the ciphertexts before sending them to public communication channels.

Analysis on Momentary Voltage Dips with the Interconnection Operation of Utility-interactive Cogneration Systems Considering Their Generator Type (발전기 형태를 고려한 열병합발전시스템의 배전계통 연계운전시의 순시전압변동 해석)

  • 최준호;김재철
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.4
    • /
    • pp.23-30
    • /
    • 2000
  • Cogeneration systems are seen as a significant innovation for dispersed energy generation since they are both environmentally friendly and has comparatively high degrees of efficiency. It is especially suited for the decentralized provision of electricity and heat. However, it causes operational problems such as voltage regulation, voltage variation, protection and safety. Especially, it is expected that the interconnection/disconnection operation of cogeneration system has an effect on distribution voltage regulation and variation. Recently, with the increased use of customer-owned computers and other sensitive electronic equipment, electric power quality has become an important concerns. Therefore, the voltage quality problems with cogeneration system should be investigated because the voltage quality is an important part of electrical power quality. In this paper, the momentary voltage dips associated with the interconnection/disconnection operation of cogeneration system are analyzed, including restraint solutions at the customer level. In addition, the unit capacity of cogeneration systems per feeder are evaluated from the view point of momentary voltage variations. The results of this paper are useful analysis data for interconnection standards/guidelines of cogeneration systems and dispersed generation (DG)

  • PDF

Research Investigations at the Municipal (2×35) and Clinical (2×5 MW) Waste Incinerators in Sheffield, UK

  • Swithenbank, J.;Nasserzadeh, V.;Ewan, B.C.R.;Delay, I.;Lawrence, D.;Jones, B.
    • Clean Technology
    • /
    • v.2 no.2
    • /
    • pp.100-125
    • /
    • 1996
  • After recycle of spent materials has been optimised, there remains a proportion of waste which must be dealt with in the most environmentally friendly manner available. For materials such as municipal waste, clinical waste, toxic waste and special wastes such as tyres, incineration is often the most appropriate technology. The study of incineration must take a process system approach covering the following aspects: ${\bullet}$ Collection and blending of waste, ${\bullet}$ The two stage combustion process, ${\bullet}$ Quenching, scrubbing and polishing of the flue gases, ${\bullet}$ Dispersion of the flue gases and disposal of any solid or liquid effluent. The design of furnaces for the burning of a bed of material is being hampered by lack of an accurate mathematical model of the process and some semi-empirical correlations have to be used at present. The prediction of the incinerator gas phase flow is in a more advanced stage of development using computational fluid dynamics (CFD) analysis, although further validation data is still required. Unfortunately, it is not possible to scale down many aspects of waste incineration and tests on full scale incinerators are essencial. Thanks to a close relationship between SUWIC and Sheffield Heat&Power Ltd., an extended research programme has been carried out ar the Bernard Road Incinerator plant in Sheffield. This plant consists of two Municipal(35 MW) and two Clinical (5MW) Waste Incinerators which provide district heating for a large part of city. The heat is distributed as hot water to commercial, domestic ( >5000 dwelling) and industrial buildings through 30km of 14" pipes plus a smaller pipe distribution system. To improve the economics, a 6 MW generator is now being added to the system.

  • PDF

Mobile Receiver Model for T-DMB Location Automatic Emergency Alert Service (T-DMB 국지적 자동재난경보방송 서비스를 위한 모바일 수신 모델)

  • Kwon, Seong-Geun;Jeon, Hee-Young;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.796-806
    • /
    • 2009
  • This paper presents the method of emergency warning system operation based on T-DMB and the design of T-DMB AEAS receiver model. The proposed receiver model compares the geographical location of emergency with the location of DMB transmitting station from T-DMB broadcasting signal and classifies the receiver location into alert region, neighboring region and non-alert region and transmits the emergency alert message according to each region. The geographical location of emergency can be obtained from FIG 5/2 EWS data field for AEAS message and the location of DMB transmitting station can be estimated from either the latitude and the longitude in main identifier and sub identifier in FIG 0/22 data filed for TII(Transmitter Identification Information) or TII distribution database. In our experiment, we implemented the proposed receiver model with display section, storage section, DMB module for receiving broadcasting signal and control section and performed test emergency alert broadcasting using T-DMB signal generator.

A Study on the Construction of Test circuit and Unification of Experiment Method for High Voltage Gas-insulated Load Switch using High Power Testing System (특고압 가스 절연 부하 개폐기의 통합형 대전력 시험 방법 및 회로 구성에 관한 연구)

  • Jung, Heung-Soo;Kim, Min-Young;Kim, Juen-Suk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.36-46
    • /
    • 2008
  • This paper is to study on the Construction of Test circuit and Unification of Experiment Method for high voltage gas-insulated load switch using high power testing system The high power testing system is a equipment to verify electrical and mechanical performance on electrical product. The system consist of short-circuit generator, back-up breaker, making switch, impedance, high voltage transformer, low voltage transformer, measuring and protection system, etc. Using this system, we can test related to high power, for example, short-time current test, active load Current test, magnetizing Current test, capacitive current test, closed loop current test, etc. Standards of high voltage gas-insulated load switch that is in use domestic distribution line are ES 5925-0002, IEC 60265-1, IEC 62271-1 and IEEE C 37.74, etc. In this paper, we standardized on the test procedure, organization of test circuit and analysis of measured data prescribed many difference standards, and applied this test method to 600[MVA] high power testing system. So that we can test the load switch satisfied standards.

Assessment of Offshore Wind Power Potential for Turbine Installation in Coastal Areas of Korea (터빈설치를 위한 한국 연안 해상풍력발전 부존량 평가)

  • Kang, Keum Seok;Oh, Nam Sun;Ko, Dong Hui;Jeong, Shin Taek;Hwang, Jae Dong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.4
    • /
    • pp.191-199
    • /
    • 2018
  • In this paper, wind data at 20 locations are collected and analyzed in order to review optimal candidate site for offshore wind farm around Korean marginal seas. Observed wind data is fitted to Rayleigh and Weibull distribution and annual energy production is estimated according to wind frequency. As the model of wind turbine generator, seven kinds of output of 1.5~5 MW were selected and their performance curves were used. As a result, Repower-5 MW turbines showed high energy production at wind speeds of 7.15 m/s or higher, but G128-4.5 MW turbines were found to be favorable at lower wind speeds. In the case of Marado, Geojedo and Pohang, where the rate of occurrence of wind speeds over 10 m/s was high, the capacity factor of REpower's 5 MW offshore wind turbine was 56.49%, 50.92% and 50.08%, respectively.

Thermal-hydraulic analysis of a new conceptual heat pipe cooled small nuclear reactor system

  • Wang, Chenglong;Sun, Hao;Tang, Simiao;Tian, Wenxi;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.19-26
    • /
    • 2020
  • Small nuclear reactor features higher power capacity, longer operation life than conventional power sources. It could be an ideal alternative of existing power source applied for special equipment for terrestrial or underwater missions. In this paper, a 25kWe heat pipe cooled reactor power source applied for multiple use is preliminary designed. Based on the design, a thermal-hydraulic analysis code for heat pipe cooled reactor is developed to analyze steady and transient performance of the designed nuclear reactor. For reactor design, UN fuel with 65% enrichment and potassium heat pipes are adopted in the reactor core. Tungsten and LiH are adopted as radiation shield on both sides of the reactor core. The reactor is controlled by 6 control drums with B4C neutron absorbers. Thermoelectric generator (TEG) converts fission heat into electricity. Cooling water removes waste heat out of the reactor. The thermal-hydraulic characteristics of heat pipes are simulated using thermal resistance network method. Thermal parameters of steady and transient conditions, such as the temperature distribution of every key components are obtained. Then the postulated reactor accidents for heat pipe cooled reactor, including power variation, single heat pipe failure and cooling channel blockage, are analyzed and evaluated. Results show that all the designed parameters satisfy the safety requirements. This work could provide reference to the design and application of the heat pipe cooled nuclear power source.