• Title/Summary/Keyword: Distribution Manufacturing

Search Result 1,635, Processing Time 0.023 seconds

The Role of the Manufacturing Sector in Promoting Economic Growth in the Saudi Economy: A Cointegration and VECM Approach

  • SALLAM, Mohamed A.M.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.7
    • /
    • pp.21-30
    • /
    • 2021
  • This study examines the role of the manufacturing sector in stimulating economic growth in the Saudi economy. Even though the economic literature shows how the manufacturing sector stimulates economic growth, it does not clearly show the role of the manufacturing sector in economic growth. The study employed annual time-series data spanning the 1980-2018 period from the databases of the Saudi Arabian Monetary Authority. Moreover, the cointegration and VECM approaches were employed to examine the short- and long-run relationship causality between variables. The results show a two-way causal relationship exists between the manufacturing sector and economic growth. Furthermore, the results indicate that a unidirectional causal relationship exists, running from the manufacturing sector to the services sector. The study recommends that the determinants of the growth of the Saudi manufacturing sector must be investigated. Moreover, the most productive Saudi manufacturing industries must be identified, and the productivity of other sectors must be increased in a way that contributes to economic plans and policies. Thus, adopting economic policies that stimulate investment in the manufacturing sector contributes to increasing non-oil exports to diversify sources of income to achieve vision 2030 of the Kingdom of Saudi Arabia.

Cooling and Deformation Analysis of a Layered Road in a FDM Type 3D Printing Through Thermal-structural Coupled Simulation

  • Kim, S.L.;Lyu, M.Y.
    • Elastomers and Composites
    • /
    • v.52 no.3
    • /
    • pp.216-223
    • /
    • 2017
  • The additive manufacturing technology, also called 3D printing, is growing fast. There are several methods for 3D printing. Fused deposition modeling (FDM) type 3D printing is the most popular method because it is simple and inexpensive. Moreover, it can be used for printing various thermoplastic materials. However, it contains the cooling of layered road and causes thermal shrinkage. Thermal shrinkage should be controlled to obtain high-quality products. In this study, temperature distribution and cooling behavior of a layered road with cooling are studied through computer simulation. The thermal shrinkage of the layered road was simulated using the calculated temperature distribution with time. Shape variation of the layered road was predicted as cooling proceeded. Stress between the bed and the layered road was also predicted.This stress was considered as the detaching stress of the layered road from the bed. The simulations were performed for various thermal conductivities and temperatures of the layered road, bed temperature, and chamber temperature of a 3D printer. The simulation results provide detailed information about the layered road for FDM type 3D printing under operational conditions.

A Study on Improving Classification Performance for Manufacturing Process Data with Multicollinearity and Imbalanced Distribution (다중공선성과 불균형분포를 가지는 공정데이터의 분류 성능 향상에 관한 연구)

  • Lee, Chae Jin;Park, Cheong-Sool;Kim, Jun Seok;Baek, Jun-Geol
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • From the viewpoint of applications to manufacturing, data mining is a useful method to find the meaningful knowledge or information about states of processes. But the data from manufacturing processes usually have two characteristics which are multicollinearity and imbalance distribution of data. Two characteristics are main causes which make bias to classification rules and select wrong variables as important variables. In the paper, we propose a new data mining procedure to solve the problem. First, to determine candidate variables, we propose the multiple hypothesis test. Second, to make unbiased classification rules, we propose the decision tree learning method with different weights for each category of quality variable. The experimental result with a real PDP (Plasma display panel) manufacturing data shows that the proposed procedure can make better information than other data mining procedures.

Comparison of Injection Molding Characteristics according to Thickness Variations of Preform for PET bottle

  • Kim, Nam Hyun;Woo, In Young;Nam, Kyung Woo;Yeon, Baek Rim;Kim, Mi Rae;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.56 no.3
    • /
    • pp.164-171
    • /
    • 2021
  • Due to the problem of environmental pollution by plastics, it is necessary to decrease their consumption. In the case of PET bottles, it is essential to reduce the thickness of the bottle for the reduction of plastic used. For manufacturing PET bottles with reduced thickness, it is a prerequisite to design a preform with reduced thickness and study its molding capability. In this study, the injection molding capability was investigated after reducing the body thickness of the preform to 15% and 20%, respectively, for the two preform models currently in use. Injection molding analysis was performed on the existing models and on the models for reduced weight, under the molding conditions of the existing models. Using the computed results, temperature distribution, pressure distribution, deformation and clamping force were compared. Based on the analysis, the injection conditions of the preform model with less thickness were discussed.

Prediction of Wear Depth Distribution by Slurry on a Pump Impeller

  • Sugiyama, Kenichi;Nagasaka, Hiroshi;Enomoto, Takeshi;Hattori, Shuji
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.1
    • /
    • pp.21-30
    • /
    • 2009
  • Slurry wear with sand particles in rivers is a serious problem for pump operation. Therefore, a technique to predict wear volume loss is required for selecting wear resistant materials and determining specifications for the maintenance period. This paper reports a method for predicting the wear depth distribution on the blade of an impeller. Slurry wear tests of an aluminum pump impeller were conducted. Prediction results of wear depth distribution approximately correspond with the results of slurry wear tests. This technique is useful for industrial application.

Flash Temperature Analysis on the Contact Surfaces between Cam and Roller-Follower Mechanism (캠과 롤러 종동자 기구의 접촉표면 순간온도 해석)

  • Koo, Young-Pil;Kim, Min-Nam;Kim, Nam-Shik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.2
    • /
    • pp.86-94
    • /
    • 2004
  • The flash temperature distribution on the contact surfaces between cam and roller-follower mechanism was analysed numerically. The elasto-hydrodynamic lubrication pressure and film thickness were used to get the accurate analysis results. The temperature distribution was obtained by numerical integration by making use of Carslaw and Jaeger's formulation to the whole contact surfaces. The maximum flash temperature was increased with both the increasing slip ratio of the contact surface and increasing external load Profile of the temperature distribution was affected by the sliding velocity of the surface.

  • PDF

Energy Partition to Workpiece in Creep feed Grinding (크맆피드연삭에서 공작물로 유입되는 에너지 비율)

  • 홍순익
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.42-48
    • /
    • 1998
  • This paper is concerned with the heat flux distribution and energy partition for creep-feed grinding. From measurements of transient grinding temperatures in the workpiece sub-surface using an embedded thermocouple, the overall energy partition to the workpiece was estimated from moving heat source theory for a triangular heat flux distribution as 3.0% for down grinding and 4.5% for up grinding. The higher energy partition for up grinding can be attribute to the need to satisfy thermal compatibility at the grinding zone. The influence of cooling outside the grinding zone can be analytically taken into account by specifying convective heat transfer coefficients on the workpiece surface ha ahead of the heat source (grinding zone) and hb behind the heat source. The smaller energy partition together with slightly lower grinding power favors down grinding over up grinding.

  • PDF

Effects of Failure Distribution Considering Various Types of Layout Structure in Automotive Engine Shops (자동차 엔진공장의 다양한 배치구조형태에서 고장분포가 미치는 영향)

  • Moon, Dug-Hee;Wang, Guan;Shin, Yang-Woo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.1
    • /
    • pp.7-16
    • /
    • 2012
  • Manufacturing system design poses many challenges for new factory construction. Factories producing the same product may nevertheless have different layouts. The machining line of the engine shop in an automotive factory is a typical flow line, but the layout concept of the line varies among factories. In this paper, a simulation study on the design concept of the manufacturing system for automotive engines is discussed. For comparison, three types of real engine block lines in different factories are analyzed, and three structures of parallel lines are extracted. The effects of failure distribution on the performance measures of three types of parallel line structures are investigated, and some insights are offered regarding the layout concept.

An Attempt to Model Distributions of Machined Component Dimensions in Production

  • Cogun, Can;Kilinc, Biinyamin
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.60-74
    • /
    • 2002
  • In this study, normal, log-normal, triangular, uniform. Weibull, Erlang and unit beta probability density functions are tried to represent the behaviour of frequency distributions of workpiece dimensions collected from various manufacturing firms. Among the distribution functions, the unit beta distribution function is found to be the best fit using the chi-square test of fit. An attempt is made for the adoption of the unit beta model to x-bar charts of quality control in manufacturing. In this direction, upper and lower control limits (UCL and LCL) of x-bar control charts of dimension measurements are estimated for the beta model, and the observed differences between the beta and normal model control limits are discussed for the measurement sets.

Prediction of Fatigue Design Life in Magnesium Alloy by Failure Probability (파손확률에 따른 마그네슘합금의 피로설계수명 예측)

  • Choi, Seon-Soon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.804-811
    • /
    • 2010
  • The fatigue crack propagation is stochastic in nature, because the variables affecting the fatigue behavior are random and have uncertainty. Therefore, the fatigue life prediction is critical for the design and the maintenance of many structural components. In this study, fatigue experiments are conducted on the specimens of magnesium alloy AZ31 under various conditions such as thickness of specimen, the load ratio and the loading condition. The probability distribution fit to the fatigue failure life are investigated through a probability plot paper by these conditions. The probabilities of failure at various conditions are also estimated. The fatigue design life is predicted by using the Weibull distribution.