• Title/Summary/Keyword: Distribution Load Flow

Search Result 326, Processing Time 0.027 seconds

Load Flow Analysis for Distribution Automation System based on Distributed Load Modeling

  • Yang, Xia;Choi, Myeon-Song;Lim, Il-Hyung;Lee, Seung-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.329-334
    • /
    • 2007
  • In this paper, a new load flow algorithm is proposed on the basis of distributed load modeling in radial distribution networks. Since the correct state data in the distribution power networks is basic for all distribution automation algorithms in the Distribution Automation System (DAS), the distribution networks load flow is essential to obtain the state data. DAS Feeder Remote Terminal Units (FRTUs) are used to measure and acquire the necessary data for load flow calculations. In case studies, the proposed algorithm has been proven to be more accurate than a conventional algorithm; and it has also been tested in a simple radial distribution system.

Load Flow Calculation and Short Circuit Fault Transients in AC Electrified Railways

  • Hosseini, Seyed Hossein;Shahnia, Farhad
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2203-2206
    • /
    • 2005
  • A load flow and short circuit fault simulation of AC electrified railway distribution systems is presented with DIgSILENT PowerFactory software. Load flow of electrified railways distribution system with concerning multi train lines and dynamic characteristics of train load is studied for different time laps. The dynamic characteristics of train load in starting and braking conditions with different starting and stopping times and its moving positions makes the load flow complicated so there is a great need in studying the effects of electrified railways on load flow. Short circuit fault transients is also studied and simulated for both power system or traction distribution system and their effects on the operation of the train sets is investigated.

  • PDF

Prediction of Thermal Load Distribution and Temperature of the Superheater in a Tangentially Fired Boiler (접선 연소식 보일러의 최종 과열기 열부하 분포 및 튜브 온도 예측에 관한 연구)

  • Park, Ho-Young;Sea, Sang-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.478-485
    • /
    • 2008
  • The extreme steam temperature deviation experienced in the superheater of a tangentially fired boiler can seriously affect its economic and safe operation. This temperature deviation is one of the main causes of boiler tube failures. The steam temperature deviation is mainly due to the thermal load deviation in the lateral direction of the superheater. The thermal load deviation consists of several causes. One of the causes is the non-uniform heat flow distribution of burnt gas on the superheater tube system. This distribution is very difficult to measure in situ using direct experimental techniques. So, we need thermal load model to estimate the tube temperature. In this paper, we propose a thermal load distribution model by using CFD analysis and plant data. We successfully predict the tube temperature and the steam flow rate in a final superheater system from the thermal load model and one dimensional heat-flow system analysis. The proposed model and analysis method would be valuable in preventing the frequent tube failure of the final superheater tubes.

A Study on the Uniform Distribution of Steam Flow in the Superheater Tube System (과열기 관군에서의 증기유량 균일 배분 연구)

  • Park, Ho-Young;Kim, Sung-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.6
    • /
    • pp.416-426
    • /
    • 2008
  • The boiler tube failure often experienced in the superheater of a utility boiler can seriously affect the economic and safe operation of the power plant. It has been known that this failure is mainly caused by the thermal load deviation in the superheater tube system, and deeply intensified by the non-uniform distribution of steam flow rates. The nonuniform steam flow is distinctively prominent at low power load rather than at full power load. In this paper, we analyze the steam flow distribution in the superheater tube system by using one dimensional flow network model. At 30% power load, the deviation of steam flow rate is predicted to be within 0.8% of the averaged flow rate. This deviation can be reduced to 0.1% and 0.07% by assuming two cases, that is, the removal of 13th tube at each tube rows and the installation of intermediate header, respectively. The assumed two cases would be effective for the uniform steam flow distribution across 85 superheater tube rows.

Load Flow Algorithm Analysis of Distribution System (배전계통 부하조류계산 알고리즘 비교 분석)

  • Kwak, Do-Il;Kim, Tae-Eung;Ryu, Jae-Hong;Kim, Jae-Eon
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.134-136
    • /
    • 1999
  • Not much work has been carried out on the load flow analysis of distribution networks. This paper introduces Newton-Raphson method using Distflow equation and Forward Sweeping method in the distribution networks. And that efficient solution scheme in a radial distribution network is presented. Also, simulation results of both Newton-Raphson method and Forward Sweeping method applied to a 22.9kV distribution system model with 120 load buses are analized and evaluated.

  • PDF

A Study on Development of a New Algorithm to Solve Load Flow for Distribution Systems (배전계통조류계산을 위한 새로운 알고리즘에 관한 연구)

  • Moon, Young-Hyun;Yoo, Sung-Young;Choi, Byoung-Kon;Ha, Bock-Nam;Lee, Joong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.918-922
    • /
    • 1998
  • With the development of industry, the qualitical advancement of power is needed. Since it is placed in the end step of power system, the fault at the distribution system causes some users blackout directly. So if the fault occurs, quick restoration is very important subject and, for the reason, induction of the distribution automation system is now being progressed briskly. For the quick restoration of the faulted distribution system, the load shedding of the blackout-area must be followed, and the other problems like the shedded load, faulted voltage and the rest may cause other accident. Accordingly load shedding must be based on the precise calculation technique during the distribution system load flow(dist flow) calculation. In these days because of its superior convergence characteristic the Newton-Raphson method is most widely used. The number of buses in the distribution system amounts to thousands, and if the fault occurs at the distribution system, the speed for the dist flow calculation is to be improved to apply to the On-Line system. However, Newton-Raphson method takes much time relatively because it must calculate the Jacobian matrix and inverse matrix at every iteration, and in the case of huge load, the equation is hard to converge. In this thesis. matrix equation is used to make algebraical expression and then to solve load flow equation and to modify above defects. Then the complex matrix is divided into real part and imaginary part to keep sparcity. As a result time needed for calculation diminished. Application of mentioned algorithm to 302 bus, 700 bus, 1004 bus system led to almost identical result got by Newton-Raphson method and showed constant convergence characteristic. The effect of time reduction showed 88.2%, 86.4%, 85.1% at each case of 302 bus, 700 bus system 86.4%, and 1004 bus system.

  • PDF

A Study for a Novel DistFlow Method in the Distribution System (배전계통에서의 새로운 DistFlow Method에 대한 연구)

  • Gwak, Do-Il;Kim, Jae-Eon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.7
    • /
    • pp.365-368
    • /
    • 2000
  • Traditionally, load flows have been calculated using the Gauss-Seidel and Newton-Raphson Method. DistFlow Method which is proposed by Wu and Baran is superior to the other two methods because it does not require the admittance matrix calculation to optimize the distribution system. This paper introduces a new alternative algorithm to the DistFlow Method which is slow and complex to find solutions as the number of lateral and sublateral increases. The proposed load flow method can construct System Jacobian easily. We can minimize the off-diagonal elements of the branch Jacobian and submatrices in the System Jacobian. Simulation results show that progressive performances of the proposed algorithm have a better convergence time.

  • PDF

Load Flow Analysis for Distribution Systems Including Distributed Generations (분산형 전원을 포함하는 배전계통을 위한 조류계산 기법 연구)

  • Kwon, Hyung-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.2
    • /
    • pp.100-106
    • /
    • 2005
  • This paper addressed the issue of the three-phase load flow program for electric power distribution systems that include distributed generations. The equipment models were selected in order to consider imbalances among phases for the load flow analysis of distribution systems. Also, power equations and measurement functions are newly derived. The load flow analysis program developed in this paper was tested for the propriety of algorithm and convergence characteristics by case studies on test systems in various scales and types.

Dynamic Load-Balancing Algorithm Incorporating Flow Distributions and Service Levels for an AOPS Node

  • Zhang, Fuding;Zhou, Xu;Sun, Xiaohan
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.466-471
    • /
    • 2014
  • An asynchronous optical packet-switching (AOPS) node with load-balancing capability can achieve better performance in reducing the high packet-loss ratio (PLR) and time delay caused by unbalanced traffic. This paper proposes a novel dynamic load-balancing algorithm for an AOPS node with limited buffer and without wavelength converters, and considering the data flow distribution and service levels. By calculating the occupancy state of the output ports, load state of the input ports, and priorities for data flow, the traffic is balanced accordingly. Simulations demonstrate that asynchronous variant data packets and output traffic can be automatically balanced according to service levels and the data flow distribution. A PLR of less than 0.01% can be achieved, as well as an average time delay of less than 0.46 ns.

MEASUREMENT OF TURBULENCE CHARACTERISTICS BY USING PARTICLE TRACKING VELOCIMETRY

  • Yoon, Byung-man;Yu, Kwon-kyu;Marian Muste
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.135-142
    • /
    • 2002
  • This study investigates the effects of sediment on the flow characteristics such as velocity distribution, friction velocity, turbulent intensities, Reynolds stress, etc. Particle tracking velocimetry (PTY) is used to measure the vertical flow field. Results show that flow over the high bed-load concentration region has larger values of mean velocity and friction velocity and smaller values of turbulence intensities, compared to those for flow over the low bed-load concentration region.

  • PDF