• Title/Summary/Keyword: Distributed-event

Search Result 308, Processing Time 0.033 seconds

In-network Distributed Event Boundary Computation in Wireless Sensor Networks: Challenges, State of the art and Future Directions

  • Jabeen, Farhana;Nawaz, Sarfraz
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2804-2823
    • /
    • 2013
  • Wireless sensor network (WSN) is a promising technology for monitoring physical phenomena at fine-grained spatial and temporal resolution. However, the typical approach of sending each sensed measurement out of the network for detailed spatial analysis of transient physical phenomena may not be an efficient or scalable solution. This paper focuses on in-network physical phenomena detection schemes, particularly the distributed computation of the boundary of physical phenomena (i.e. event), to support energy efficient spatial analysis in wireless sensor networks. In-network processing approach reduces the amount of network traffic and thus achieves network scalability and lifetime longevity. This study investigates the recent advances in distributed event detection based on in-network processing and includes a concise comparison of various existing schemes. These boundary detection schemes identify not only those sensor nodes that lie on the boundary of the physical phenomena but also the interior nodes. This constitutes an event geometry which is a basic building block of many spatial queries. In this paper, we introduce the challenges and opportunities for research in the field of in-network distributed event geometry boundary detection as well as illustrate the current status of research in this field. We also present new areas where the event geometry boundary detection can be of significant importance.

Design and evaluation of a GQS-based time-critical event dissemination for distributed clouds

  • Bae, Ihn-Han
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.5
    • /
    • pp.989-998
    • /
    • 2011
  • Cloud computing provides computation, software, data access, and storage services that do not require end-user knowledge of the physical location and configuration of the system that delivers the services. Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. One of the fundamental challenges in geographically distributed clouds is to provide efficient algorithms for supporting inter-cloud data management and dissemination. In this paper, we propose a group quorum system (GQS)-based dissemination for improving the interoperability of inter-cloud in time-critical event dissemination service, such as computing policy updating, message sharing, event notification and so forth. The proposed GQS-based method organizes these distributed clouds into a group quorum ring overlay to support a constant event dissemination latency. Our numerical results show that the GQS-based method improves the efficiency as compared with Chord-based and Plume methods.

A GGQS-based hybrid algorithm for inter-cloud time-critical event dissemination

  • Bae, Ihn-Han
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1259-1269
    • /
    • 2012
  • Cloud computing has rapidly become a new infrastructure for organizations to reduce their capital cost in IT investment and to develop planetary-scale distributed applications. One of the fundamental challenges in geographically distributed clouds is to provide efficient algorithms for supporting inter-cloud data management and dissemination. In this paper, we propose a geographic group quorum system (GGQS)-based hybrid algorithm for improving the interoperability of inter-cloud in time-critical event dissemination service, such as computing policy updating, message sharing, event notification and so forth. The proposed algorithm first organizes these distributed clouds into a geographic group quorum overlay to support a constant event dissemination latency. Then it uses a hybrid protocol that combines geographic group-based broad-cast with quorum-based multicast. Our numerical results show that the GGQS-based hybrid algorithm improves the efficiency as compared with Chord-based, Plume an GQS-based algorithms.

Architecture Modeling and Performance Analysis of Event Rule Engine (이벤트 파싱 엔진의 구조 설계와 성능 분석)

  • 윤태웅;민덕기
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.11a
    • /
    • pp.51-57
    • /
    • 2003
  • In operating distributed systems, proactive management is one of the major concerns for better quality of service and future capacity planning. In order to handle this management problem effectively, it is necessary to analyze performances of the distributed system and events generated by components in the system. This paper provides a rule-based event parsing engine for proactive management. Our event parsing engine uses object hooking-based and event-token approaches. The object hooking-based approach prepares new conditions and actions in Java classes and allows dynamically exchange them as hook objects in run time. The event-token approach allows the event parsing engine consider a proper sequence and relationship among events as an event token to trigger an action. We analyze the performance of our event parsing engine with two different implementations of rule structure; one is table-based and the other is tree-based.

  • PDF

Wide-Area SCADA System with Distributed Security Framework

  • Zhang, Yang;Chen, Jun-Liang
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.597-605
    • /
    • 2012
  • With the smart grid coming near, wide-area supervisory control and data acquisition (SCADA) becomes more and more important. However, traditional SCADA systems are not suitable for the openness and distribution requirements of smart grid. Distributed SCADA services should be openly composable and secure. Event-driven methodology makes service collaborations more real-time and flexible because of the space, time and control decoupling of event producer and consumer, which gives us an appropriate foundation. Our SCADA services are constructed and integrated based on distributed events in this paper. Unfortunately, an event-driven SCADA service does not know who consumes its events, and consumers do not know who produces the events either. In this environment, a SCADA service cannot directly control access because of anonymous and multicast interactions. In this paper, a distributed security framework is proposed to protect not only service operations but also data contents in smart grid environments. Finally, a security implementation scheme is given for SCADA services.

Distributed Secondary Voltage Control of Islanded Microgrids with Event-Triggered Scheme

  • Guo, Qian;Cai, Hui;Wang, Ying;Chen, Weimin
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1650-1657
    • /
    • 2017
  • In this study, the distributed secondary voltage control of islanded microgrids with multi-agent consensus algorithm is investigated. As an alternative to a time-triggered approach, an event-triggered scheme is proposed to reduce the communication load among inverter-based distributed generators (DGs). The proposed aperiodic control scheme reduced unnecessary utilization of limited network bandwidth without degrading control performance. By properly establishing a distributed triggering condition in DG local controller, each inverter is only required to send voltage information when its own event occurs. The compensation of voltage amplitude deviation can be realized, and redundant data exchange related to fixed high sampling rate can be avoided. Therefore, an efficient use of communication infrastructure can be realized, particularly when the system is operating in steady state. The effectiveness of the proposed scheme is verified by simulations on a microgrid test system.

Submarine Diving Simulation Using a DEVS-HLA Interface based on the Combined Discrete Event and Discrete Time Simulation Model Architecture (이산 사건/이산 시간 혼합형 시뮬레이션 모델 구조 기반 DEVS-HLA 인터페이스를 이용한 잠수함의 잠항 시뮬레이션)

  • Cha, Ju-Hwan;Ha, Sol;Roh, Myung-Il;Lee, Kyu-Yeul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.4
    • /
    • pp.279-288
    • /
    • 2010
  • In this paper, a DEVS(Discrete EVent Systems Specification)-HLA(High Level Architecture) interface was developed in order to perform the simulation using the combined discrete event and discrete time simulation model architecture in a distributed environment. The developed interface connects the combined simulation model with the HLA/RTI(Run-Time Infrastructure) which is an international standard middleware for distributed simulation. The interface consists of an interface model, a model interpreter, and a distributed environment interpreter. The interface model was defined by using the combined simulation architecture in order to easily connect the existing combined simulation model without modification with the HLA/RTI. The model interpreter takes charge of data transmission between the interface model and the combined simulation model. The distributed environment interpreter takes charge of data transmission between the interface model and the HLA/RTI. To evaluate the applicability of the developed interface, it was applied to the diving simulation of a submarine in a distributed environment. The result shows that a simulation result in a distributed environment using the interface is the same to the result in a single computing environment.

MicroPost: The Design of an Efficient Event Notification Architecture for Distributed Social Applications (MicroPost: 분산형 소셜 애플리케이션을 위한 효율적인 이벤트 통지 아키텍처의 설계)

  • Bae, Joon-Hyun;Kim, Sang-Wook
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.232-239
    • /
    • 2009
  • Emerging social networking services provide a new paradigm for human-to-human communication. However, these services are centralized and managed by single service provider. In this paper, we propose MicroPost, a decentralized event notification service architecture for social applications based on publish/subscribe model. In our design space, event brokers are structured as an overlay network which provides the substrate of distributed peer-to-peer lookup service for storing and retrieving subscriptions with hashed keys. Event clients interact with event brokers to publish or subscribe social messages over the wide-area network. Using XML standards, we present an efficient algorithm to forward events for rendezvous-based matching in this paper. In our design space, the cost of routing is O(${\omega}log_kN$), where N is the number of event brokers, ${\omega}$ is the number of meta-data obtained from event messages, and k is a constant, which is selected by our design, to divide the identifier space and to conquer the lookup of given key. Consequently, what we achieved is an asynchronous social messaging service architecture which is decentralized, efficient, scalable, and flexible.

  • PDF

Energy-Saving Distributed Algorithm For Dynamic Event Region Detection (역동적 이벤트 영역 탐색을 위한 에너지 절약형 분산 알고리즘)

  • Nhu, T.Anh;Na, Hyeon-Suk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06d
    • /
    • pp.360-365
    • /
    • 2010
  • In this paper, we present a distributed algorithm for detecting dynamic event regions in wireless sensor network with the consideration on energy saving. Our model is that the sensing field is monitored by a large number of randomly distributed sensors with low-power battery and limited functionality, and that the event region is dynamic with motion or changing the shape. At any time that the event happens, we need some sensors awake to detect it and to wake up its k-hop neighbors to detect further events. Scheduling for the network to save the total power-cost or to maximize the monitoring time has been studied extensively. Our scheme is that some predetermined sensors, called critical sensors are awake all the time and when the event is detected by a critical sensor the sensor broadcasts to the neighbors to check their sensing area. Then the neighbors check their area and decide whether they wake up or remain in sleeping mode with certain criteria. Our algorithm uses only 2 bit of information in communication between sensors, thus the total communication cost is low, and the speed of detecting all event region is high. We adapt two kinds of measure for the wake-up decision. With suitable threshold values, our algorithm can be applied for many applications and for the trade-off between energy saving and the efficiency of event detection.

  • PDF

The CORBA Event Service Mechanism for Distributed Object Integration (분산 객체 통합을 위한 CORBA 이벤트 서비스 기법)

  • 이재완
    • Journal of Internet Computing and Services
    • /
    • v.2 no.1
    • /
    • pp.77-85
    • /
    • 2001
  • CORBA is a middleware which enables distributed objects to cooperate regardless of specific platforms and techniques. But the ordinary CORBA communication model does not support multi-cast, and needs delay time, because it synchronously connects the distributed objects between client and server. To solve these problems, OMG suggests CORBA Event Service which can provide multi-cast among application objects. This paper presents a new technique for improving reliability, and supporting two-way communication by laying two interface objects on each consumers and suppliers that are registered in event channel. Also, to integrate objects efficiently, we, group distributed event channels and management it as view, A coordinator selected from channel group controls group and view.

  • PDF