• Title/Summary/Keyword: Distributed-Parameter System

Search Result 218, Processing Time 0.033 seconds

Analysis of the Friction Induced Instability of Disc Brake Using Distributed Parameter Model (분포매개변수를 이용한 디스크 브레이크의 마찰기인 불안정성 해석)

  • 차병규;조용구;홍정혁;이유엽;이정윤;오재응
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.702-708
    • /
    • 2004
  • This paper deals with friction-induced vibration of disc brake system under constant friction coefficient. A linear, lumped and distributed parameter model to represent the floating caliper disc brake system is proposed. The complex eigenvalues are used to investigate the dynamic stability and in order to verify simulations which are based on the theoretical model, the experimental modal test and the dynamometer test are performed. The comparison of experimental and theoretical results shows a good agreement and the analysis indicates that mode coupling due to friction force is responsible for disc brake squeal. And squeal type Instability is Investigated by using the parametric analysis. This indicates parameters which have influence on the propensity of brake squeal. This helped to validate the analysis model and establish confidence in the analysis results. Also they may be useful during system development or diagnostic analysis.

Non-linear distributed parameter system estimation using two dimension Haar functions

  • Park Joon-Hoon;Sidhu T.S.
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.3
    • /
    • pp.187-192
    • /
    • 2004
  • A method using two dimension Haar functions approximation for solving the problem of a partial differential equation and estimating the parameters of a non-linear distributed parameter system (DPS) is presented. The applications of orthogonal functions, including Haar functions, and their transforms have been given much attention in system control and communication engineering field since 1970's. The Haar functions set forms a complete set of orthogonal rectangular functions similar in several respects to the Walsh functions. The algorithm adopted in this paper is that of estimating the parameters of non-linear DPS by converting and transforming a partial differential equation into a simple algebraic equation. Two dimension Haar functions approximation method is introduced newly to represent and solve a partial differential equation. The proposed method is supported by numerical examples for demonstration the fast, convenient capabilities of the method.

Duplication with Task Assignment in Mesh Distributed System

  • Sharma, Rashmi;Nitin, Nitin
    • Journal of Information Processing Systems
    • /
    • v.10 no.2
    • /
    • pp.193-214
    • /
    • 2014
  • Load balancing is the major benefit of any distributed system. To facilitate this advantage, task duplication and migration methodologies are employed. As this paper deals with dependent tasks (DAG), we used duplication. Task duplication reduces the overall schedule length of DAG along-with load balancing. This paper proposes a new task duplication algorithm at the time of tasks assignment on various processors. With the intention of conducting proposed algorithm performance computation; simulation has been done on the Netbeans IDE. The mesh topology of a distributed system is simulated at this juncture. For task duplication, overall schedule length of DAG is the main parameter that decides the performance of a proposed duplication algorithm. After obtaining the results we compared our performance with arbitrary task assignment, CAWF and HEFT-TD algorithms. Additionally, we also compared the complexity of the proposed algorithm with the Duplication Based Bottom Up scheduling (DBUS) and Heterogeneous Earliest Finish Time with Task Duplication (HEFT-TD).

Development of a Plate Manufacturing CAD/CAM Program for a Optimal Layout and Distributed Control System

  • Kim, Hun-Mo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1089-1103
    • /
    • 2000
  • A Problem of relevant interest to some industries is that of obtaining optimum two-dimensional layout. To solve this provlem, one is given a number of rectangular sheets and an order for a specified number of each of certain types of two-dimensional regular and irregular shapes. The aim is to cut the the shapes out of the sheets in such a way as to minimize the amount of waste produced. A DCS (Distributed Control System) is an integrated system which applies the decentralization concept to a control system handling both sequential and analog control. A DCS performs many operations such as data gathering, data processing, data storing and monitoring the operatin conditions for the operator. IN this paper, we propose a genetic algorithm based on rotation parameters from which the best pattern of layout is found as well as a layout method for better performance time. A DCS for the plate cutting process system, which is performed by a virtual system, is also identified.

  • PDF

Weighted Distance-Based Quantization for Distributed Estimation

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.4
    • /
    • pp.215-220
    • /
    • 2014
  • We consider quantization optimized for distributed estimation, where a set of sensors at different sites collect measurements on the parameter of interest, quantize them, and transmit the quantized data to a fusion node, which then estimates the parameter. Here, we propose an iterative quantizer design algorithm with a weighted distance rule that allows us to reduce a system-wide metric such as the estimation error by constructing quantization partitions with their optimal weights. We show that the search for the weights, the most expensive computational step in the algorithm, can be conducted in a sequential manner without deviating from convergence, leading to a significant reduction in design complexity. Our experments demonstrate that the proposed algorithm achieves improved performance over traditional quantizer designs. The benefit of the proposed technique is further illustrated by the experiments providing similar estimation performance with much lower complexity as compared to the recently published novel algorithms.

Distributed Estimation Using Non-regular Quantized Data

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.7-13
    • /
    • 2017
  • We consider a distributed estimation where many nodes remotely placed at known locations collect the measurements of the parameter of interest, quantize these measurements, and transmit the quantized data to a fusion node; this fusion node performs the parameter estimation. Noting that quantizers at nodes should operate in a non-regular framework where multiple codewords or quantization partitions can be mapped from a single measurement to improve the system performance, we propose a low-weight estimation algorithm that finds the most feasible combination of codewords. This combination is found by computing the weighted sum of the possible combinations whose weights are obtained by counting their occurrence in a learning process. Otherwise, tremendous complexity will be inevitable due to multiple codewords or partitions interpreted from non-regular quantized data. We conduct extensive experiments to demonstrate that the proposed algorithm provides a statistically significant performance gain with low complexity as compared to typical estimation techniques.

Simulated Analysis for the Transient Impedance Behaviors of Counterpoises Subjected to the Impulsive Currents (임펄스전류에 의한 매설지선의 과도임피던스특성에 대한 모의해석)

  • Joe, Jeong-Hyeon;Lee, Bok-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1861-1868
    • /
    • 2009
  • A ground electrode subjected to lightning surge current shows the transient impedance behaviors. The ground electrode for protection against lightning should be evaluated in view of the transient grounding impedance and conventional grounding impedance, not ground resistance. The transient impedance characteristics of ground electrodes are influenced by the shape of ground electrode and the soil characteristics, as well as the waveform of lightning surge current. In order to propose a simulation method of analyzing the transient impedance characteristics of the grounding system in practical use, this paper suggests a theoretical analysis method of distributed parameter circuit model to simulate the transient impedance characteristics of counterpoise subjected to lightning surge current. EMTP and Matlab programs were employed to compute the transient grounding impedances of three counterpoises with different lengths. As a consequence, the simulated results using the proposed distributed parameter circuit model are in good agreement with the measured results.

The Communication Method at the Auto-Startup System using TCP/IP and VXI and Expert System(G2)

  • Kim, Jung-Soo;Joon Lyon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.141-146
    • /
    • 1999
  • This paper describes the communication method of an auto-startup system. The Auto-Startup system is designed to operate a nuclear power plant automatically during the startup operation . In general , the operations during startup in existing plant have only been manually controlled by the operator. The manual operation caused to the operator mistake. The Auto-Startup system consists of the Distributed Control System(DCS) and G2 (Expert System). Also, Functional Test Facility(FTF) provides the plant's real-data for an Auto-Startup system. So, it is necessary to develop the communication method between these systems. We developed two methods ; one is a network and the other is a hardwire line. To communicate between these systems (DCS-G2 and DCS-FTF) , we developed the communication program. In case of DCS-FTF, we used the TCP/IP and VXI. BUt, in case of DCS-G2 , we , what it called , developed the bridge program using the GSI(G2 Standard Interface). We test to check the function of the important parameter, in time, for analysis of the developed communication method. The results are a good performance when we check the communication time of important parameter. We conclude that Auto-startup system could save heat-up time about at least 5 hours and reduced the change of the reactor operation and trip.

  • PDF

Operation Characteristics Investigation of the Next Generation High Speed Railway System with respect to IPMSM Parameter Variation (IPMSM 파라미터 변동에 따른 차세대 고속전철 시스템의 운전 특성 고찰)

  • Park, Dong-Kyu;Suh, Yong-Hun;Lee, Sang-Hyun;Jin, Kang-Hwan;Kim, Yoon-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3133-3141
    • /
    • 2011
  • The next generation domestic high speed railway system is a power distributed type and uses vector control method for motor speed control. Nowadays, inverter driven induction motor system is widely used. However, recently PMSM drives are deeply considered as a alternative candidate instead of an induction motor drive system due to their advantages in efficiency, noise reduction and maintenance. The next-generation high speed train is composed of 2 converter units, 4 inverter units, and 4 Traction Motor units. Each motor is connected to the inverter directly. In this paper, the effect of IPMSM parameter variations to the system operation characteristics of the multi inverter drive high speed train system are investigated. The parallel connected inverter input-output characteristics are analyzed to the parameter mismatches of IPMSM using the 1C1M control simulator based on Matlab/Simulink.

  • PDF

On iterative learning control for some distributed parameter system

  • Kim, Won-Cheol;Lee, Kwang-Soon;Kim, Arkadii-V.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.319-323
    • /
    • 1994
  • In this paper, we discuss a design method of iterative learning control systems for parabolic linear distributed parameter systems(DPSs). First, we discuss some aspects of boundary control of the DPS, and then propose to employ the Karhunen-Loeve procedure to reduce the infinite dimensional problem to a low-order finite dimensional problem. An iterative learning control(ILC) for non-square transfer function matrix is introduced finally for the reduced order system.

  • PDF