• Title/Summary/Keyword: Distributed routing

Search Result 313, Processing Time 0.04 seconds

Distributed Routing Based on Minimum End-to-End Delay for OFDMA Backhaul Mobile Mesh Networks

  • Chung, Jong-Moon;Lee, Daeyoung;Park, Jong-Hong;Lim, Kwangjae;Kim, HyunJae;Kwon, Dong-Seung
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.406-413
    • /
    • 2013
  • In this paper, an orthogonal frequency division multiple access (OFDMA)-based minimum end-to-end delay (MED) distributed routing scheme for mobile backhaul wireless mesh networks is proposed. The proposed scheme selects routing paths based on OFDMA subcarrier synchronization control, subcarrier availability, and delay. In the proposed scheme, OFDMA is used to transmit frames between mesh routers using type-I hybrid automatic repeat request over multipath Rayleigh fading channels. Compared with other distributed routing algorithms, such as most forward within radius R, farthest neighbor routing, nearest neighbor routing, and nearest with forwarding progress, simulation results show that the proposed MED routing can reduce end-to-end delay and support highly reliable routing using only local information of neighbor nodes.

A study of Distributed QoS Routing Performance with Implicit 2-level Information (암시적 3단계 정보를 갖는 분산 QoS 라우팅 성능 연구)

  • Han, Jeong-Su;Jeong, Jin-Uk
    • The KIPS Transactions:PartC
    • /
    • v.9C no.1
    • /
    • pp.141-148
    • /
    • 2002
  • In this paper, we study the various performance of Distributed QoS Routing according to how many level of routing table information in router. And we study Flooding and recently proposed 2-level forwarding, and compare with performance of implicit 3-level forwarding. Performance factors are message overhead that is generated on Distributed QoS Routing and Route Setup success Rate, Connection blocking rate, Network Utilization. They can decide the accuracy of routing information in rouser. Our simulation shows that more level of routing table information have, lower message overhead generate but lower performance at other factors because of inaccuracy of routing information.

Hybrid Distributed Stochastic Addressing Scheme for ZigBee/IEEE 802.15.4 Wireless Sensor Networks

  • Kim, Hyung-Seok;Yoon, Ji-Won
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.704-711
    • /
    • 2011
  • This paper proposes hybrid distributed stochastic addressing (HDSA), which combines the advantages of distributed addressing and stochastic addressing, to solve the problems encountered when constructing a network in a ZigBee-based wireless sensor network. HDSA can assign all the addresses for ZigBee beyond the limit of addresses assigned by the existing distributed address assignment mechanism. Thus, it can make the network scalable and can also utilize the advantages of tree routing. The simulation results reveal that HDSA has better addressing performance than distributed addressing and better routing performance than other on-demand routing methods.

A Reliable Distributed Shortest Path Routing Algorithm for Computer Networks (컴퓨터 네트워크를 위한 신뢰성 있는 분산 최단경로 설정 알고리즘)

  • 박성우;김영천
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.1
    • /
    • pp.24-34
    • /
    • 1994
  • In most computer networks, each node needs to have correct routing information for finding shortest paths to forward data packets. In a distributed environment, however, it is very difficult to keep consistent routing information throughout the whole network at all times. The presence of out-dated routing information can cause loop-forming which in turn causes the significant degradation of network performance. In this paper, a new class of routing algorithm for loop detection and resolution is discussed. The proposed algorithm is based on the distributed Bellman-Ford algorithm which is popularly adopted for routing in computer network. The proposed algorithm detects and resolves all kinds( two-node and multi-node) of loop in a distributed environment within finite time while maintaining the simplicity of the distributed Bellman-Ford algorithm.

  • PDF

Agent-based control systemfordistributed control of AGVs (AGV의 분산제어를 위한 에이전트 기반의 제어시스템)

  • O, Seung-Jin;Jeong, Mu-Yeong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.1117-1123
    • /
    • 2005
  • This paper deals with a new automated guided vehicle (AGV) control system for distributed control. Proposed AGV control system adapts the multi-agent technology. The system is composed of two types of controller: routing and order. The order controller is in charge of assignment of orders to AGVs. Through the bidding-based negotiation with routing controllers, the order controller assigns a new order to the proper AGV. The order controller announces order information to the routing controllers. Then the routing controllers generate a routing schedule for the order and make a bid according to the routing schedule. If the routing schedule conflicts with other AGV's one, the routing controller makes an alternative through negotiation with other routing controllers. The order controller finally evaluates bids and selects one. Each controller consists of a set of agents: negotiation agent, decision making agent and communication agent. We focus on the agent architecture and negotiation-based AGV scheduling algorithm. Proposed system is validated through an exemplary scenario.

  • PDF

Design and Analysis of an Efficient Distributed Routing Algorithm in Multistage Interconnection Networks (다단계 상호 연결망에서의 효율적인 분산 라우팅 알고리듬의 설계 및 분석)

  • 손유익;안광선
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1794-1803
    • /
    • 1989
  • This paper presents and evaluates a distributed routing algorithm for effective routing control in circuit-switched multistage interconnection networks. The proposed method uses the distributed control based on the incividual-switching element control and it is very effective for allowing any broadcast connection from a source to arbitrary number of destinadtions. The performnace of the proposed method is analyzed and evaluated by computer simulation in terms of the normalized average time delays.

  • PDF

A Geographic Distributed Hash Table for Virtual Geographic Routing in MANET (MANET에서 가상 위치 기반 라우팅을 위한 지역 분산 해쉬 테이블 적용 방법)

  • Ko, Seok-Kap;Kim, Young-Han
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.58-65
    • /
    • 2008
  • This paper presents a new geographic distributed hash table (GDHT) for MANETs or Mesh networks, where virtual geographic protocol is used. In previous wort GDHT is applied to a network scenario based on two dimensional Cartesian coordinate system. Further, logical data space is supposed to be uniformly distributed. However, mobile node distribution in a network using virtual geographic routing is not matched to data distribution in GDHT. Therefore, if we apply previous GDHT to a virtual geographic routing network, lots of DHT data are probably located at boundary nodes of the network or specific nodes, resulting in long average-delay to discover resource (or service). Additionally, in BVR(Beacon Vector Routing) or LCR(Logical Coordinate Routing), because there is correlation between coordinate elements, we cannot use normal hash function. For this reason, we propose to use "geographic hash function" for GDHT that matches data distribution to node distribution and considers correlation between coordinate elements. We also show that the proposed scheme improves resource discovery efficiently.

Partially Distributed Dynamic Model for Secure and Reliable Routing in Mobile Ad hoc Networks

  • Anand, Anjali;Aggarwal, Himanshu;Rani, Rinkle
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.938-947
    • /
    • 2016
  • A mobile ad hoc network (MANET) is a collection of mobile nodes communicating in an infrastructure-less environment without the aid of a central administrating authority. Such networks entail greater dependency on synergy amongst the nodes to execute fundamental network operations. The scarcity of resources makes it economically logical for nodes to misbehave to preserve their resources which makes secure routing difficult to achieve. To ensure secure routing a mechanism is required to discourage misbehavior and maintain the synergy in the network. The proposed scheme employs a partially distributed dynamic model at each node for enhancing the security of the network. Supplementary information regarding misbehavior in the network is partially distributed among the nodes during route establishment which is used as a cautionary measure to ensure secure routing. The proposed scheme contemplates the real world scenario where a node may exhibit different kinds of misbehavior at different times. Thus, it provides a dynamic decision making procedure to deal with nodes exhibiting varying misbehaviors in accordance to their severity. Simulations conducted to evaluate the performance of the model demonstrate its effectiveness in dealing with misbehaving nodes.

Location Based Routing Service In Distributed Web Environment

  • Kim, Do-Hyun;Jang, Byung-Tae
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.340-342
    • /
    • 2003
  • Location based services based on positions of moving objects are expanding the business area gradually. The location is included all estimate position of the future as well as the position of the present and the past. Location based routing service is active business application in which the position information of moving objects is applied efficiently. This service includes the trajectory of past positions, the real-time tracing of present position of special moving objects, and the shortest and optimized paths combined with map information. In this paper, we describes the location based routing services is extend in distributed web GIS environment. Web GIS service systems provide the various GIS services of analyzing and displaying the spatial data with friendly user - interface. That is, we propose the efficient architecture and technologies for servicing the location based routing services in distributed web GIS environment. The position of moving objects is acquired by GPS (Global Positioning System) and converted the coordinate of real world by map matching with geometric information. We suppose the swapping method between main memory and storages to access the quite a number of moving objects. And, the result of location based routing services is wrapped the web-styled data format. We design the schema based on the GML. We design these services as components were developed in object-oriented computing environment, and provide the interoperability, language-independent, easy developing environment as well as re - usability.

  • PDF

Autonomous, Scalable, and Resilient Overlay Infrastructure

  • Shami, Khaldoon;Magoni, Damien;Lorenz, Pascal
    • Journal of Communications and Networks
    • /
    • v.8 no.4
    • /
    • pp.378-390
    • /
    • 2006
  • Many distributed applications build overlays on top of the Internet. Several unsolved issues at the network layer can explain this trend to implement network services such as multicast, mobility, and security at the application layer. On one hand, overlays creating basic topologies are usually limited in flexibility and scalability. On the other hand, overlays creating complex topologies require some form of application level addressing, routing, and naming mechanisms. Our aim is to design an efficient and robust addressing, routing, and naming infrastructure for these complex overlays. Our only assumption is that they are deployed over the Internet topology. Applications that use our middleware will be relieved from managing their own overlay topologies. Our infrastructure is based on the separation of the naming and the addressing planes and provides a convergence plane for the current heterogeneous Internet environment. To implement this property, we have designed a scalable distributed k-resilient name to address binding system. This paper describes the design of our overlay infrastructure and presents performance results concerning its routing scalability, its path inflation efficiency and its resilience to network dynamics.