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Autonomous, Scalable, and Resilient
Overlay Infrastructure

Khaldoon Shami, Damien Magoni, and Pascal Lorenz

Abstract: Many distributed applications build overlays on top of
the Internet. Several unsolved issues at the network layer can ex-
plain this trend to implement network services such as multicast,
mobility, and security at the application layer. On one hand, over-
lays creating basic topologies are usually limited in flexibility and
scalability. On the other hand, overlays creating complex topolo-
gies require some form of application level addressing, routing,
and naming mechanisms. Qur aim is to design an efficient and
robust addressing, routing, and naming infrastructure for these
complex overlays. Our only assumption is that they are deployed
over the Internet topology. Applications that use our middleware
will be relieved from managing their own overlay topologies. Our
infrastructure is based on the separation of the naming and the ad-
dressing planes and provides a convergence plane for the current
heterogeneous Internet environment. To implement this property,
we have designed a scalable distributed k-resilient name to address
binding system. This paper describes the design of our overlay in-
frastructure and presents performance results concerning its rout-
ing scalability, its path inflation efficiency and its resilience to net-
work dynamics.

Index Terms: Addressing, antonomous, distributed, dynamic, nam-
ing, overlay, routing.

L. INTRODUCTION

Designing an application level addressing, routing, and nam-
ing infrastructure for Internet overlays is challenging when no
constraint is put on the topology of its members. However, it can
be very useful to provide such a middleware for creating these
overlays. For instance, setting up a tree topology is easy but pro-
vides very little robustness. Complex mechanisms must be used
to avoid loops and to recreate the tree in case of branch failures.
The advantages of allowing an overlay to have a free topology
only restrained by the underlying network (i.e., the Internet for
our purpose) are that it is very easy to add or remove nodes
withoutbreaking it and that redundant links provide load balanc-
ing and increased robustness. On the other hand, a free topol-
ogy overlay requires a proper routing system that our infrastruc-
ture aims at providing. Furthermore, our infrastructure provides
a separation between node addressing and naming. Thus, our
overlay infrastructure enables applications:
¢ To run seamlessly over private and public addressing spaces

(even over private networks having address overlapping),
to use node mobility without network layer support,
¢ to mix node mobility with secured connections,
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¢ to use application layer multicast,

« and to use name based instead of address based security.
The use of our infrastructure enables networked applications to
work over the current heterogeneous Internet, for example, (i.e.,
NAT routers, IPSec tunnels, etc.) in a true end to end mode (nec-
essary for P2P applications for instance) while using mobility,
multicast, and security in a seamless way.

Our paper contains four sections. In Section II, we briefly
present prior and related work on overlay networks. In Sec-
tion I1I, we describe how our infrastructure is designed. In Sec-
tion IV, we discuss the benefits brought by using this infrastruc-
ture. Finally, in Section V, we present the performance results
of our infrastructure obtained by simulations and concerning its
routing scalability, its path inflation efficiency and its resilience
to network dynamics.

II. RELATED WORK

An important point that many people agree on is that nam-
ing and addressing should be separated [1]-[3]. Many problems
could be elegantly solved if this feature was provided by the 1P
protocol. Solutions providing indirect addressing are proposed
by many experimental protocols (e.g., INS [2], INPL [4], and
i3 [5]) and especially by those designed for host mobility (e.g.,
TCP-Migrate [6] and Tribe [7]). All these solutions do cre-
ate some forms of overlays, although not always at the appli-
cation layer, in order to solve issues such as uniform address-
ing and mobility. Application layer overlays providing multi-
cast support have also been designed and implemented (e.g.,
Narada [8], NICE [9], and ROMA [10]) in order to be used over
networks that do not run multicast protocols. Overlays can also
be designed to provide new services such as resilient networking
(e.g., RON [11]) and peer-to-peer objet lookup (e.g., Chord [12],
Pastry [13], etc.), thus, opening new opportunities for network
applications.

On a more theoretical level related to local routing, the trade-
off between routing table sizes and path lengths has been ac-
tively studied by the distributed algorithm community. Eilam et
al. have proved in [14] that it is possible to bound the average
stretch (i.e. })ath length inflation) by 3 with routing tables of size

(n3/%1og®?n). Similarly, Cowen has proved in [15] that it is
poss1ble to bound the maximum stretch (i.e., path inflation) by
3 with routing tables of size O(n2/3log*®n) and Krioukov et
al. have shown that compact routing in the Internet yields an av-
erage stretch of 1.1 [16]. However, to achieve their goal, they
use an appropriate labeling for every vertex and both do not de-
scribe how to implement it as a distributed algorithm. Concern-
ing overlay topologies, Li er al. have shown in [17} that they
do have an impact on the routing performances thus further mo-
tivating our work. In this paper, we present an infrastructure
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where table sizes are not a function of the network size but a
function of the node degrees. Although our infrastructure does
not provide an upper bound on the average stretch, it is typically
below 2.3 as shown in Section V.

Our work is related to network convergence as fully explained
in Section IV because our overlay architecture restores, at the
application layer, one of the fundamental Internet paradigms
which is the existence of a unique public identifier for everyone.
This was the key success of the network convergence leading
to the creation of the Internet. Today, new networks rise again
such as IPv6, private NATs, GSM, UMTS, etc. They all have
different addressing schemes. As our architecture can cope with
any underlying protocol, it can bind these heterogeneous net-
works in order to restore the use of a globally unique and reach-
able identifier. It concerns broadband in the sense that it is fully
scalable and our experiments detailed in Section V show that
our architecture works with more than 10,000 nodes. Thus, it
is not destined to small private networks but to huge networking
communities located everywhere in the currently interconnected
networks (e.g., Internet, cellular networks, etc.). By introducing
additional layers in the members of our overlay network we not
only restore the end-to-end properties of the original Internet but
we also provide support for advanced networking such as trans-
parent mobility, group communications and security. All these
services are currently hard to deploy at the network layer and
are usually not factorized in a single architecture and software.
Thus the advantages of our architecture when building an over-
lay are

1. the creation of a global dynamic addressing space at the ap-
plication layer that ensures network convergence,

2. the creation of a persistent naming space that provides not
only machine names but also service and group names and
ensures user application level security,

3. the use of a scalable and dynamic binding system between
these naming and addressing spaces in order to provide sup-
port for mobility, security, and group communications simul-
taneously.

The disadvantages of our architecture are

1. the introduction of a middleware that must run on the nodes
participating in the overlay (however, nodes can withdraw
and rejoin at will),

2. the slight loss of performance introduced by the protocols
of our middleware layer (e.g., routing may be suboptimal
compared to network layer routing),

3. the need of processing and storage power in the overlay
nodes in order to cope with the autonomous distributed nam-
ing and addressing system that runs in our middleware.

1II. INFRASTRUCTURE DESCRIPTION

As we have designed an infrastructure that puts no constraint
on the topologies of the overlays, we have to define a distributed
addressing mechanism in order to properly route data packets
inside the overlay. Our overlay infrastructure is currently nick-
named DHARMA which stands for dynamic hierarchical ad-
dressing, routing, and naming architecture.

DHARMA DHARMA
architecture behavior
" End to end
Application forwarding
— Middleware API _ T -
Name Steering w l
— z |
=]
Address Routing I G
Transport or network API F-— _ — —J
Point to point
Network (TCP, Ethernet, etc.) forwarding

Fig. 1. Middleware layout.

A. Layout

Fig. 1 shows the infrastructure and middleware layout. We
can see the addressing plane located over the network layer and
the naming plane located over the addressing one. The process
of forwarding packets in the overlay is divided into two parts.

The first part, called routing, is similar to the current routing
in the Internet. Overlay routing only uses the overlay addresses.
The network or transport connections between overlay nodes
are considered point-to-point connections. If a reliable transport
layer protocol is used (such as TCP) then no transmission reli-
ability mechanism is needed in our middleware. If a data link
layer protocol (such as Ethernet) or an unreliable transport layer
protocol (such as UDP) is used then a transmission reliability
mechanism is needed in our infrastructure. We have not studied
this issue yet and we assume at the moment that the application
using our middleware will take care of the transmitted data reli-
ability if the connections are not using a reliable transport layer
protocol. In the rest of this paper, we assume that the overlay
nodes connect themselves via TCP.

The second part called steering is specific to our infrastructure
and introduces more flexibility in the overlay communications
especially for mobile, multicast, and secured communications as
explained in Section IV. Overlay steering consists in binding the
names of the overlay nodes to their current addresses before or
during a data transmission between overlay nodes. It can be seen
as a second stage routing system. It also binds various logical
names (user, service, or group names) to overlay node names
before or during a data transmission between overlay nodes. In
order to make the steering work, the names must be properly
mapped to the correct addresses. This binding is managed by a
subset of the overlay nodes that agree to play the role of name
servers.

B. Addressing

Each overlay node has an address. An address is composed of
one or several fields containing numbers and separated by dots,
one field for each level of the address hierarchy. Each field of an
address is also called a label. The level of the address is equal
to the number of fields in the address. The prefix of an address
is equal to the address without the last field. The last field is
called the local field or local label. The number of levels in the
hierarchy is not fixed but totally dynamic. Its value depends on
how the addresses are distributed at any given time. It is worth
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noticing that the length of the label should be defined once at the
creation of the overlay. Each node in the overlay network has at
least one address and typically more in order to cope with the
network dynamics as explained later.

The addressing plane contains zones that correspond to the
address fields. The label size, thus, defines the maximum zone
size. All zones have the same fixed size n (called the zone size).
There is one level 1 (i.e., top level) zone containing n nodes
(defined in the first address field). Then, there are at most n
level 2 zones each containing at most n nodes (defined by the
first two address fields). Then, there are at most n? level 3 zones
each containing at most n nodes and so on. This means that all
the address space can be theoretically distributed and if we have
k levels and { bits per level, we can address 2¥%! nodes. The aim
of this hierarchical addressing is to enforce the construction of
zones of limited size in order to make routing scalable.

The addressing of the overlay nodes is fully distributed: It
relies only on local knowledge in a node. The only local knowl-
edge we rely on is the degree of the node and the addresses and
degrees of its neighbors. Any node is supposed to know this
information. Let us assume that the zone size is n. Each node
that has address w.z.y is responsible for allocating the following
addresses to its neighbors:

e The address w.z.(y+1) (called a “next” address) where (y+
1)<n,

e the address w.z.y.1 (called a “down” address),

e the addresses w.z.y.z (called a “leaf” address) where z > n.

The first node of the overlay takes the address 1. The nodes
connect to each other by the use of transport protocols (e.g.,
TCP, etc.). As transport protocols are used for setting point to
point connections between pairs of overlay nodes, different pro-
tocols can be used simultaneously, layer 2 protocols can be used
and unique network layer addresses are not required among all
overlay nodes. In order to connect to an overlay, new or moving
nodes must know the network address (usually IP addresses) of
at least one overlay node. This address should be provided by
out-of-band methods (e.g., email, WWW, SDP, etc.) via the ap-
plication that is using this overlay. The overlay nodes directly
connected by data link or transport protocols to a given node are
defined as its neighbors. Nodes join the overlay successively by
connecting themselves to already connected ones. When a node
wants to join the overlay, it asks for address proposals to all its
neighbors. Each neighbor proposes an address to the joining
node, from the possibilities of the above list, that it has not al-
ready given to one of its other neighbors. The joining node then
chooses one or more addresses with the following priority:

e The shortest address,

e in case of draw, the shortest “next” address,

e if no “next” address, the shortest “down” address,
e if no “down” address, the shortest “leaf” address.

Fig. 2 illustrates a joining node requesting addresses from its
neighbors. As said above, a leaf address is an address whose
local label is above the zone size value (e.g., if the zone size is
32, the first leaf label is 33). Nodes that have a leaf address can
only route data to their father even if they are connected to other
nodes, they are considered as leaf nodes for the overlay routing
system. That is why they are chosen by newcomers with the
lowest priority.

proposal
@=19

proposal

@=21

4%)posal
@=4

New overlay member

Fig. 2. Joining overlay node asking for addresses.

C. Routing

Routing in the overlay consists in using the addresses of the
overlay nodes in order to transmit overlay-level data packets to
their proper destination. As we saw in the previous section, the
address(es) obtained by an overlay node depend(s) on its neigh-
bors and thus on its localization. Thus, our routing mechanism
is address-driven (i.e., some path information is stored in the
addresses). The core principle of our infrastructure is that every
node only needs to store the addresses of its neighbors in order
to properly route the packets towards their destination. Thus, its
routing table only contains the (few) addresses of its neighbors.
However, as the path towards the destination is partly contained
in the destination address itself, the path length depends on the
efficiency of the address allocation.

In hierarchical routing, when a packet is routed in a node, if
the destination address is down this node hierarchy, the packet
is driven to the node of the current zone that leads further to-
wards the destination zone (we call it the ingress node). If the
destination address is not down the current node hierarchy, the
packet is driven to the first node of the zone (i.e., the one with a
local label of 1) in order to be sent to the upper level zone (we
call it the egress node). When a packet is routed inside a zone
because the destination is in the zone or to go to the ingress or
egress node, it is routed by a technique that we call the closest
label. This technique only needs to know the addresses of the
neighbors. The closest label routing technique works as follows.
If the destination local label is lower than the current node local
label, then the packet is forwarded to the neighbor node which
has the lowest local label higher or equal to the destination lo-
cal label. If the destination local label is higher than the current
node local label, then the packet is forwarded to the neighbor
node which has the highest local label lower or equal to the des-
tination local label. As the neighbors have a continuous label
assignment, this technique ensures that the packet will reach its
destination although not necessarily by a shortest path.
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destination

Fig. 3. Path inflation caused by hierarchical routing.

Fig. 3 illustrates the effects of hierarchical routing and short-
est path routing between the nodes 1.1 and 3.1 on path lengths.
The hierarchical routing forces the message to be routed via 1
and 3 thus giving a path length of 3 hops while a shortest path
routing requires only 2 hops via 2 to reach the destination. We
define the path length ratio (or path inflation) as the value of the
hierarchical routing path length in hops divided by the shortest
path routing path length in hops.

If a node moves or fails, thus invalidating its address, all pack-
ets routed to itself or to a destination address that contains its
invalid address will not be able to be routed anymore. To solve
this issue, two techniques are simultaneously used
e addresses are always stored temporarily (i.e., soft state) and

nodes having lost connections will get back their address or
get new addresses from the operational (working) nodes to
which they reconnect to.

e Each node can simultaneously use several addresses pro-
vided by different neighbors, thus allowing itself to be
reached by alternate paths if the current used path is blocked
by a moving or failed node.

All addresses are given a timeout value v; and have to be pe-
riodically refreshed by hello messages sent by the address giv-
ing neighbor(s). Invalid addresses and derived addresses thereof
will not be refreshed. If the owning node does not reappear
again (i.e., in the case of a permanent move or failure) at the end
of a timeout value vy (v2 > Kdepsn X 1), the node responsible
for this address (i.e., the one that gave it) will be able to allocate
it to another node. In this case, all the addresses derived from the
invalid address will also be flushed. If all destination addresses
fail during the data routing, the sending node must wait until the
connectivity to the destination is restored (i.e., connections are
re-established and addresses are re-allocated).

Each node can be located by several addresses (i.e., more than
one). The additional addresses can be chosen at the time of in-
sertion in the overlay or later on when the overlay connectivity
changes and more addresses become available to the node as a
result. All the addresses owned by a given node must come from
different neighbors (checks are made on the node’s name). All

source

/
Valid path /
using 2nd @, /
/

@={3.1;2.1}

Fig. 4. Alternate routing for solving network dynamics.

the addresses owned by a given node must be different, that is
they must not have a common prefix. Otherwise, if the disap-
pearing node address is included in the common prefix, all ad-
dresses will not work. This multiple address allocation increases
the amount of routing information to be stored by a factor equal
to the number of addresses per node but the advantage is that the
network dynamics are handled transparently by the addressing
protocol. If a packet can not be routed because a node has disap-
peared, it can use one of the alternate addresses to get through to
the destination as shown in Fig. 4. Two solutions are possible:
Either the packet carries all the destination addresses and thus it
can be rerouted on the fly by using its alternate addresses (but
this uses more bandwidth) or a warning message is sent back to
the source which then will change the destination address by an
alternate one in all future packets.

D. Naming

We have seen above that every node in the overlay has one
(or several addresses to cope with network dynamics). These
addresses depend on the location of the node in the overlay and
they are subject to network dynamics (i.e., addition, removal, or
movement of nodes). In order to be able to communicate seam-
lessly, every node in the overlay has a unique name that remains
the same over the lifetime of the node. Applications using our
infrastructure use the names of the nodes to establish communi-
cation links between them. Thus, address changes in nodes are
transparent to the applications. The binding between the names
and the addresses are done via name servers. Name servers are
regular overlay nodes that accept to carry on the name solving
tasks because they have more capacities and they move much
less than the other nodes (the node having address 1 is always a
name server). In order to be scalable, the name servers are orga-
nized in a tree hierarchy. The tree depth plus one is equal to the
hierarchy maximum level. Each name server has a hash table
storing the addresses of its next level name servers and a name
table storing the name-to-address mappings as shown in Fig. 5.
A name is composed of several parts. Each part corresponds to
one level of the name server hierarchy. It is not a problem if
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Fig. 5. Hierarchical organization of name servers.

the number of levels is different from the number of parts. The
name servers’ hierarchy is totally independent of the addressing
hierarchy. The scalability of the namespace storage is ensured
by a procedure loosely based on the principle of distributed hash
tables.

In the following, we assume that there are no name server
dynamics (i.e., failures). When a new node has joined the over-
lay, it has selected one or several addresses. It then chooses a
name and sends a message containing its name and addresses
io the node 1 for storing this information in a name server. On
reception, the node 1 performs a hash on the first part of the new
node’s name and sends the message to the corresponding second
level name server. On reception, the second level name server
hashes the second part of the name and sends the message as
before, down in the name servers’ hierarchy. If the name has no
more part to hash or if there is no entry for the hash result, or if
the hash table is empty in a name server, then this last server has
to store the name and addresses in its name table if this name
does not already exist (otherwise, another name must be chosen
by the new node). When a node wants to obtain the addresses
of a destination node given its name (the name is supposed to be
known by an external mechanism), it sends a request message
to the node 1 containing the name to solve and its own address.
The request is forwarded to the proper name server by hashing
the name exactly as during a store operation. The name server
holding the name will send back a message containing the ad-
dresses of the destination name to the request node by using the
sender address in the request.

In order to provide load balancing and cope with name server
dynamics, we use a replication approach. We want our naming
system to be resilient for up to k failures. Thus, we assume
that a redundancy factor k is chosen at the start of the overlay
construction. The total number of servers equals s. Each name
server has & — 1 exact copies called replicas. The & first level
nodes having addresses 1 to k& will be serving as first level name
servers. They will have a copy of the hash and name tables of the
node having address 1 and they will perform the same functions
thus acting as redundant servers. Clients (i.e., nodes request-

nst (@=1) nslr (@ =2)
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.

Hash table
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Fig. 6. Name to address storing procedure.

ing addresses) can, therefore, send store and request messages
to nodes 1 to k. Also each hash entry in any server in the hier-
archy will store k name servers instead of one. The result of a
hash will provide up to k& suitable servers if all are operational
and one will be picked randomly for receiving the message. In
the Jower levels, as for the first level, the & name servers corre-
sponding to one hash entry will have to maintain the same hash
and name tables as they act as redundant servers. Thus, there is
a tradeotf between providing load balancing and fault tolerance
and managing replication for the s cliques of & identical name
servers. We also envision to use name caches in all nodes of the
overlay in order to increase performances.

Fig. 6 shows how the names are stored in a naming system
with & = 2 (i.e., one replica per name server). We suppose that
no servers are down here. A client overlay node named n7 (and
having address @7) sends a store message to the first level name
servers, namely the overlay nodes having the addresses 1 and 2
(as k = 2). Then, the first server (with address 1 here) for-
wards the store messages to the level 2 name servers found in its
hash table (here hashing part 1 of n7 gives v1 for instance which
points to ns2 and ns2r). Then, the level 2 server (ns2 here) for-
wards the store messages to the level 3 name servers found in
its hash table (here hashing part 2 of n7 gives v2 for instance
pointing to ns5 and nsS5r). Then, both ns5 and nsSr store the ad-
dress @7 of the name n7 in their name tables as they are at the
bottom of the hierarchy. Thanks to this procedure, all replicas
of a given name server have exactly the same name table. No-
tice that a name server and each of its replicas maintain a list of
themselves called a pool list. Thus, they can communicate be-
tween themselves and ensure that they have the same hash table.
As Fig. 6 shows, a name server and its replicas have the exact
same name table and hash table. If a server is down during a
store operation that concerns it, it can, upon restart, wait until
the next store message of the client (as the names are soft-state
stored) or ask one of the other replicas by using its pool list.

Fig. 7 shows how the names are retrieved in a naming system
with k£ = 2. We assume that node named n7 tries to solve it:
own name in order to be consistent with the previous figure
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Fig. 7. Name to address solving procedure.

This client thus sends a solve message to one of the first level
name servers. Server nsl is up and tries to forward the request
to ns2. As ns2 is down, nsl tries to forward the request to the
next replica of ns2 found in its hash table, namely ns2r. This
behavior ensures the resilience of the naming system. As ns2r
is up, it receives the request and sends it to ns5r instead of ns5
thus providing load balancing.

There are at least two major differences between our nam-
ing distribution strategy and the famous DNS [18] that maps do-
main names to IP addresses. First, domain names are still mainly
aliases of IP addresses and if an IP device goes in a different IP
network, it will obtain a different IP prefix and thus it will usu-
ally not be able to keep its domain name (some dynamic DNS
services keep up to date with changing IP, mobile IP can help,
too). Second, our solution does not make use of iterative calls
such as in the DNS. Client messages are sent to top level name
servers that forward them to servers down the hierarchy and fi-
nally, the server holding the desired addresses replies directly
to the client. Finally, our infrastructure must be autonomic for
each and any overlay in order to be deployed by hosts without
constraints thus we can not use or ask for modifications in the
current DNS service.

E. Steering

Steering consists in mapping a name to an address at any mo-
ment during the routing process inside the overlay. Thus, any
overlay packet contains the addresses as well as the names of
the overlay source and destination nodes (in unicast). The pri-
mary aim of steering is to enable the applications to establish
connections by using names rather than addresses thus hiding
any topology changes from applications. Steering can be done at
the beginning of a connection or on the fly by any overlay node
during a connection if one of the source or destination nodes is
changing its address or if a group name is used as destination
name (as in multicast). The connection of two overlay nodes by
using their names is called a virtual connection. As a name is an
invariant over the lifetime of the entity and is unique, their use
can restore the original assumptions initially put on Internet ad-

dresses: Uniqueness and durability. These properties of original
[P addresses have been exploited in many ways, in particular by
incorporating them in transport identifiers. Thus, they have been
built into transport check-sums, cryptographic signatures, web
documents, etc. The name layer of our middleware restores the
property of Internet end-to-end transparency currently lost be-
cause of dynamic address allocation, firewalls, NATS, etc. The
basic sequence for establishing an unicast communication in the
overlay between node named A and node named B is

1. a joins the overlay network by connecting to an overlay
node C located close to A and discovered via an out-of-band
source (web, email, etc.),

2. aretrieves the name of B from a directory distributed in the
overlay (this is currently left to be managed by the applica-
tion using the overlay) or from an out-of-band source (web,
email, etc.),

3. aretrieves the address of B from an overlay name server by
using B’s name and sending a request to one of the overlay
nodes that have addresses between 1 and & (level 1 name
Servers),

4. a sends packets inside the overlay to B and includes its own
address in the first few packets so B can reply without query-
ing a name server.

IV. INFRASTRUCTURE BENEFITS

The benefits provided by the separation of naming and ad-
dressing in our infrastructure are multifold.

A. Networking Convergence

In a world where IPv6 would be used everywhere as well
as mobile IPv6 and router level multicasting, there would most
probably be no need for our overlay infrastructure. However,
we think that this idealistic scenario will require several years
before becoming a reality. Distributed applications might want
to use advanced network services now in the real world where
[Pv4 and IPv6 co-exist, IP mobility and router level multicast are
very scarcely deployed and public IP addressing is coping with
private IP addressing enabled by NAT. Our overlay infrastruc-
ture is designed to provide a uniform addressing space, mobility
management, and multicast support to networked applications
deployed over the currently highly heterogeneous Internet. As
our overlay infrastructure is completely autonomic in terms of
addressing, routing, and naming, only the computers willing to
use an application using our infrastructure will have to run an
instance of our middleware.

Fig. 8 shows a small scenario where four overlay nodes are
connected by using our middleware. Each node is an overlay
neighbor of its leftside node and rightside node. On this figure,
the real network connectivity between the nodes is shown (in-
stead of the overlay connectivity as on the other figures). The
laptop is connected to the leftmost desktop computer at the OSI
data link layer by using IEEE 802.2. The leftmost computer is
connected to the center computer at the transport layer by us-
ing a TCP connection. The center computer is connected to the
rightmost computer also at the transport layer by using UDP.
As explained in Section III-A, these data link or transport layer
connections are considered point-to-point overlay connections.
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Fig. 8. Network convergence with our middleware.

Reliability must currently be provided by the application if no
reliable transport protocol is used. However, we are currently
implementing reliability in our middleware to free the applica-
tion from this task. In this scenario, if the laptop changes its IP
address (because of DHCP or moving in another IP subnet) the
overlay communications will not be broken as they rely only on
the overlay name. Even if the laptop moves to another WiFi net-
work, it will only need to connect (bootstrap) to another over-
lay node and gain a new overlay address but communications
will be maintained. The firewall can be crossed by encaspulat-
ing DHARMA data in TCP connections using open ports. The
NAT can be made transparent to the application once a transport
connection is established between one private IP addressed node
and a public IP addressed node (the connection is initiated by the
private node). Thus, a distributed or P2P application can fully
work on top of our overlay infrastructure even if the underlying
nodes are located in a mix of public and private IP subnets.

B. Mobility

Let us assume that a destination mobile device establishes
a connection with a source correspondent having address 1.1.
Fig. 9 shows the location of the mobile node, the source and
three other overlay nodes. A binding is created between the mo-
bile original address 2.1 and the source. The packets are routed
in the overlay from the source through nodes with addresses 1
and 2 to the mobile with address 2.1 (thick dashed arrow line).
If the mobile moves to a new location, it will get a new address
from its new neighbor and then it will send update messages
(thin dotted arrows) to the name server nsl and to the source
and optionally to its previous neighbor having address 2 in or-
der to give them its new address (i.e., to update the mapping
between its name and its address in the caches of the source, the
previous neighbor and in the naming system). Some packets will
be lost but eventually, the source will send them to the mobile
through nodes 1 and 3 without breaking the application layer
binding. The optional update message to overlay node with ad-
dress 2 will enable it to reroute late packets to the new mobile
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Fig. 9. Mobility scenario.

address (i.e., to steer packets). This mechanism will also work
for network mobility. However, when a network connects itself
to a new location, the new prefix will have to be propagated ev-
erywhere inside it and sub-level prefixes will have to be rebuilt.

C. Security

The use of IPsec can be hindered when coping with mobil-
ity in the current Internet architecture. In IPsec, a security as-
sociation (SA) is uniquely identified by a triple consisting of a
security parameter index (SPI), an IP destination address, and
a security protocol (AH or ESP) identifier [19]. However, if
the destination is a mobile, the SA will be invalidated when the
IP address of the mobile changes. It is possible to use middle-
boxes such as firewalls to securely tunnel the traffic through the
public Internet. But, what if the spy is inside the network of
the end-user? Securing strictly end-to-end will always be safer
than tunneling and it will relieve the firewalls from becoming
hot spots for attacks. By using the name defined in our infras-
tructure instead of the address, a SA can remain valid even if
the underlying topology changes (e.g., the mobile moves and its
address changes).

Furthermore, a name in the overlay can define a user or a
group rather than simply a node, which is much richer seman-
tically and thus enables a finer control of the communication
policies. It also makes management and auditing easier. Instead
of having to authorize all possible node names from where a
given person could connect to a given service, only the name of
the person will need to be stored in the policy database.

Firewalls will also make a great benefit of using the name
rather than the address. By using a name referring to a service
instead of a node (for a server), firewalls will be able to filter the
traffic depending on its meaning whatever the networking con-
ditions (e.g., it will be possible to filter encrypted data from a
mobile source). This is not possible today especially when the
ESP protocol [20] is used. By encrypting the transport header,
ESP prevents firewalls from filtering on the application type. Fi-
nally, firewall configuration will be easier and more meaningful
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Fig. 10. Multicast scenario.

by using names. All these issues lead us to conclude that de-
ploying a secured infrastructure over our middleware is much
more flexible and efficient than deploying it over a regular IP
network.

D. Multicast

In multicasting, two name levels are used. One virtual name
for the group and the names of the overlay nodes participating in
the group. The name servers store and solve all types of names
(group or node). Let us assume that a multicast source with ad-
dress 1.1, having registered the group name to the overlay nam-
ing system, starts emitting a video stream to this group name.
This group consists in node Destination 1 with address 2.1 and
will be joined by the overlay node Destination 2 with address
3.1 as shown in Fig. 10. Destination 2 sends a join message (thin
dotted arrow) to the name server nsl in order to be bound to the
group name. Overlay nodes on the data path (i.e., nodes with
address 1 and 2) will solve the group name stored in the pack-
ets into the overlay node names and will duplicate the packets if
necessary (i.e., if the group members’ nodes are not reachable
by the same output connection). Thus node with address 2 will
duplicate the packets as shown in the figure by the thick dashed
lines.

V. EXPERIMENTS
A. Settings

In order to evaluate our overlay infrastructure, we have used
one 12 k-node IPv4 map made in July 2004 and one 4 k-node
IPv6 map made in June 2003, both collected by using our IP
topology mapping nec software [21]. These maps are more ac-
curate with regard to their amount and placement of links than
the maps produced by previous efforts as we show in [22]. We
assume on first approximation that overlays deployed over the
Internet can be represented as subgraphs of these maps.

For the overlay construction, the first node is a randomly cho-
sen node having an above average network level degree (>10).

Overlay nodes and links are then gradually added to the overlay
from the nodes and links of one given map.

For network dynamics, we have analyzed periodical percent-
age of random node removal ranging from 0 to 50% of the map
size and allocating 1 to 4 (at most) addresses to each node. Net-
work dynamics are a macroscopic way to simulate the addition,
removal, movement and failure of the overlay nodes. At the be-
ginning of the simulation all nodes belong to the overlay. Before
the simulation starts, a given % of nodes are randomly selected
and removed from the overlay. After every 10 runs, all the re-
moved nodes are re-inserted in the overlay and again the same %
of nodes are randomly selected and removed from the overlay.
Although x remains the same, the actual nodes that are removed
each time will be different most of the time especially when  is
low. This simulates the addition, removal, movement and failure
of the overlay nodes while keeping the size of the overlay equal
to (100 — z)%.

For name servers, we have selected random nodes having an
above average network degree (>5). For name server dynamics,
we have studied periodical percentage of random node removal
ranging from 0 to 50% of the total number of name servers.
Name server dynamics are handled as regular node dynamics.
At the beginning of the simulation all name server are up and
running. Before the simulation starts, a given 2% of all the name
servers are randomly selected and labeled as failed servers. Af-
ter every 10 runs, all the failed servers are re-inserted in the
overlay and again the same % of servers are randomly selected
and labelled as failed. Although x remains the same, the actual
failed servers will be different most of the time especially when
z is low. This simulates the random failures of the overlay name
servers while keeping the size of the running servers equal to
(100 — z)%.

As the process of generating addressing planes, selecting
name servers and selecting source and destination nodes involve
random selection (and thus random rolls), we have used a se-
quential scenario of simulation [23] to produce the results shown
in the next section. As the random rolls are the only source of
randomness in our simulation, we can reasonably assume that
the simulation output data obey the central limit theorem. We
have performed a terminating simulation where each run (one
run is the time horizon) consists in picking an overlay source
node and an overlay destination node and determining:

e The success of the name resolution of the destination node,
s the distance in hops of the name resolution including the re-
ply,
the total amount of packets sent for the name resolution,
the flat and hierarchical distances between the source and
destination nodes,
e and the success of the hierarchical routing in presence of
network dynamics.

In order to reduce calculation costs, the creation of the ad-
dressing and naming planes as well as the placement of the name
servers are done every 100 runs, the network nodes and name
servers dynamics described above happen every 10 runs and the
sequential checkpoints are carried out every 5 runs. This ex-
plains the small fluctuations found in some plots. All the simu-
lation results have been obtained assuming a confidence level of
0.95 with a relative statistical error threshold of 5% for all mea-
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Fig. 11. Percentage of success vs. network dynamics.

sured metrics. Simulations have been carried out in our static
simulator nem software [24].

B. Results

In all our simulations, the results obtained with the IPv6 map
were very close to the ones obtained with the [Pv4 map when
expressed as percentages (e.g., of the number of nodes in the
overlay, of the average path length, etc.). Thus, we only show
here the results for the IPv4 map unless specified otherwise.

Fig. 11 shows the percentage of successful routing attempts
as a function of the network dynamics percentage. As explained
above, a given percentage of nodes are absent, thus the overlay
may not be connected but composed of multiple connected com-
ponents. The percentage is calculated as the number of success-
ful hierarchical routing attempts divided by the number of suc-
cessful flat routing attempts. As the hierarchical path is longer
than the flat (i.e., shortest) path, it may go out of the source-
destination component and thus it will make the routing fail.
We can see that with only one address (i.e., no route alternative),
20% of dynamics makes the success rate fall under 20%. How-
ever, the addition of addresses to the nodes heavily increases
the routing success. With up to 4 addresses per node and 20%
of dynamics, the success reaches 55%. Increasing the maximum
number of addresses per node does not linearly improve the suc-
cess because the maximum number of addresses per node is still
bounded by its neighborhood size (and this is small for most of
the nodes because of the underlying Internet topology).

Fig. 12 shows the path inflation as a function of the network
dynamics percentage. First we can see that the path inflation is
around 2.3 when all overlay nodes are operational. This path in-
flation result not taking dynamics into account is coherent with
those of our early work [25]. This is a good ratio for an applica-
tion layer routing protocol as discussed in Section II. The path
inflation is decreasing when the dynamics % is increasing be-
cause as the network becomes more fragmented the connected
components become smaller and so do their inner paths.

We saw in Section III that addresses are stored in soft state
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Fig. 12. Path inflation vs. network dynamics.
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Fig. 13. Percentage of success vs. addressing convergence time.

and have to be refreshed at a regular given time interval. We call
this duration a time period. We assume that all overlay nodes
are using the same time period value but it could also be de-
pending on the mobility of the node (we leave this evaluation
for future work). Fig. 13 shows the percentage of successful
routing attempts as defined before as a function of the number
of time periods. Each plot corresponds to a given percentage of
network dynamics ranging from 10% to 50%. For these plots,
each node could have up to 4 addresses at most (the plots with
lower maximum addresses per node are worse but have the same
characteristics). These plots show the percentage of chance that
an overlay source node has to reach an overlay destination node.
We can see on these plots that given a few time periods (typically
more than 5), there is a convergence of the addressing algorithm
that almost guarantees the routing to succeed (above 95%).

We evaluate now the efficiency and scalability performances
of our naming resolution system. Fig. 14 shows the average
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Fig. 14. Name resolving path length ratio vs. number of levels.

path length or distance d (expressed as a % of the average round
trip in hops) of a name resolution including the answer with re-
spect to the number of levels in the hierarchy [ and the hash
table size k. Recall that % is the maximum number of next level
name servers under one name server (fanout). Although this is
expected that the distance is increasing as the levels increase, the
plots surprisingly show a linear fit (as shown in the figure for a
hash table size of 5). However, the values remain always be-
low 2.5 times the average round trip between any pair of nodes.
These results show that the name resolution has a reasonable
distance (and thus delay) cost. Indeed, 5 hierarchy levels can
handle a very large amount of names. We can also see on the
plots that the distance does not vary with the hash table size as
all the plots are very close. This is expected as the hash table
size will only have an effect on the distribution of the name load
at each level. Thus we can write d o< [ (1) when [ is small.

Fig. 15 shows the name table size n (expressed as a % of
the name space) with respect to the hash table size h and the
number of levels in the hierarchy /. We can see that n is a func-
tion of h to the power of a constant for [ fixed (as shown in
the figure for a 3-level hierarchy) and that it decreases when
h increases. This is expected by the theoretical equations. If
we call s the number of name servers in our system, we have

s = 5;:_;11 (2). Furthermore, if the names of the overlay mem-
bers m are well distributed in the s servers, then the names are
stored in the leaves of a balanced h-ary tree and we can approx-
imate n ~ ML—l (3). The explanation is that increasing the hash
table size increases the number of servers and thus reduces the
burden on each server. The plots show that the number of levels
also have an important impact on the name table sizes for the
same reason.

Fig. 16 shows the average distance d of a name resolution

with respect to the name table size n. Equations (1) and (3) give
us d < lfoggf . However, we can see that the plots do not prop-
erly fit the data (0.88 correlation coefficient only). Our multiple

approximations may be the cause of this phenomenon. Never-
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Fig. 16. Name resolving path length ratio vs. name table size.

theless, this plot shows that we can obtain a good tradeoff be-
tween the cost of name resolutions and the cost of storage in
each name server by choosing values in the bottom-left area.
Fig. 17 shows the name table size n (expressed as a % of the
number of names) with respect to the number of name servers
(expressed as a % of the number of overlay members). We can
see that n is inversely proportional to m. This is expected by

mh _
- the theoretical equations. Equations (2) and (3) give s « Zt

h—1
which gives s o n(’,’l‘—fl) if mTh > 1, which for m and h fixed
gives n oc s~!. The plot shows that we can achieve a good
tradeoff between the % of name servers required and the size of
the name tables to be stored in each of them by choosing values
in the bottom-left area.

We evaluate now the resilience performances of our naming
resolution system. We first fix [ and h in order to reduce our pa-

rameter space. The results previously shown in Figs. 14 and 15
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Fig. 17. Name table size vs. number of name servers.

encourage us to choose [ = 3 hierarchy levels in order to keep
the name resolution distance reasonable and a hash table size of
h = 6 in order to limit the name table size. These parameters
yield a number of name servers of 43, each having a name table
containing around 300 names. Remember that the total overlay
size is equal to 12977 nodes. Thus, the name servers represent
0.33% of the overlay nodes and they hold each 2.3% of the nam-
ing space. If we look at the plot of Fig. 17, we can see that these
percentage values define a point located in the lower left area of
the figure where the trade-off between the name table size and
the amount of name servers is optimal. We have evaluated re-
dundancy values k ranging from 1 (no replica) to 8 (7 replicas
per name server). Thus, the number of servers ranges from 43
to 344. This remains appropriate given the total number of over-
lay nodes. Although the replicas increase the overall number of
servers, the name table size of the servers remains the same (i.e.,
around 300).

Fig. 18 shows the percentage of successful naming resolution
as a function of the name servers’ dynamics percentage. As ex-
plained above, a given percentage of name servers are down. We
can see that with no replica, 20% of dynamics makes the name
resolution success rate fall under 50%. However, the addition of
3 replicas to each of the name servers heavily increases the nam-
ing resolution success. With-up to 3 replicas per server and 50%
of dynamics, the success rate still remains above 80%. Increas-
ing the number of replicas above 3 per server does not linearly
improve the success as it gets closer of 100%.

Fig. 19 shows the average number of times that a request be-
tween a client and a server or between two servers has failed
because of a fallen name server. The maximum value is [(k - 1)
fork > 1 and 1 for £ = 1. As we have 3 levels in the hierar-
chy, the maximum value is 3 for k¥ = 2, 9 for k¥ = 3, and 21
for k = 8. For any value of k, the plot shows that this value
increases when the % of failures increases. For no replicas, the
plot tends quickly towards 1 but for £ > 1, we can see that the
system is far from using all the possible attempts when the %
of failures is equal or less than 50%. For & = 8 and 50% of
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Fig. 18. Percentage of successful resolutions vs. name server failures.
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failures, this value is just above 3 while it could reach 21.

Fig. 20 shows the average distance covered by a name reso-
lution in hops including the reply and expressed as a ratio of the
average round trip distance measured in the overlay. We have
made this measurement as a function of the levels in Fig. 14
(with no replicas) and have seen that for 3 levels in the hierar-
chy this value is roughly equal to 150%. For 0% of failures, we
observe the same value here (taking into account the relative sta-
tistical error of 5%). For k& < 3, this value is decreasing nearly
linearly as the amount of failed requests (and thus the name res-
olutions) increases. For k > 2, this value is increasing a little bit
when the % of failures increases. This shows that most of the
requests are successful (thus making a round trip) even though
the increasing number of resubmitted request (to avoid fallen
servers) makes the overall paths a bit longer.

Fig. 21 shows the average total number of packets emitted per
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name resolution including the reply. Any crossed link counts for
one packet. The trend of these plots closely and naturally maps
the trend of the plots of Fig. 20 albeit with different values. The
total number of packets decreases when k is low and requests
fail to complete while it increases when k is high and a large
number of alternate request are possible via the replicas.

VI. CONCLUSION

In this paper, we have proposed a scalable, resilient, and au-
tonomous overlay infrastructure based on a distributed hierar-
chical addressing, routing and naming framework. The corre-
sponding middleware is designed for applications creating and
using overlays set up on top of the Internet. We have defined a
local knowledge routing scheme based on an efficient localiza-
tion driven addressing and the simulation results obtained upon
two realistic Internet maps have shown that our solution yields
a reasonable path inflation ranging between 10% and 130% de-
pending on the network dynamics. We have described how to
cope with network dynamics and simulations have shown that
our multiple address allocation scheme multiplies by 2 the rout-
ing success percentage when the network dynamics are equal or
above 10%. We have also shown that routing is nearly guaran-
teed given enough convergence time (5 or more time periods).
Finally, we have designed an autonomous scalable distributed
k-resilient name to address binding system for efficiently sep-
arating the naming and addressing planes thus allowing appli-
cations to seamlessly use advanced network services such as
mobility and multicast. Simulation results have shown that the
tradeoff between resolution costs and name table sizes can be
optimized. We also have shown that by using a reasonable
amount of name server replicas (3 or more), we can cope with
the failure of up to 50% of the name servers while maintaining
a name solving success ratio above 80%. Our simulations were
done on overlays having up to 12,000 nodes which makes us
believe that our infrastructure is scalable to very large overlays.

We are currently implementing our infrastructure as a host

60

50

40_ P

Average nb of packets per name solving

20
-k =
10—+k=2
. —A—k=4
——}=§|
0 L " " "
0 5 10 15 20 25 30 35 40 45 50

% of name server failure

Fig. 21. Average amount of packets sent vs. name server failures.

level network middieware. A basic prototype written in C by
graduate students is available at [26]. This prototype uses the
sockets API for portability and currently runs over LINUX. Ap-
plications using our middleware will be able to set up self-
organizing efficient and scalable overlays. They will provide
an autonomic support for addressing and naming management
thus freeing the applications of many network level limitations.
Our future work is targeted at improving our address allocation
scheme, evaluating the overlay data forwarding performances
(e.g., TCP pipelining), implementing data forwarding reliability
when needed (i.e., over 802.2 and UDP) and testing our middle-
ware in real situation.
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