• Title/Summary/Keyword: Distributed resources

Search Result 2,098, Processing Time 0.032 seconds

Developing Tool of Distributed Application Program Based on Distributed Object Group Framework (분산객체그룹 프레임워크 기반 분산응용 프로그램 개발 도구)

  • Lim Jeong-Taek;Shin Chang-Sun;Joo Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.6 no.6
    • /
    • pp.71-83
    • /
    • 2005
  • In this paper, we developed the Distributed Programming Developing Tool(DPDT) which can make distributed application program efficiency based on the distributed object group framework supporting group management and dynamic binding for object resources requested from clients on distributed systems. The distributed object group framework we constructed provides not only the group register/withdraw, the access right and the name/property services for server objects from a point of view of group management services, but also dynamic binding, replicated object supporting, load balance, and federation among the object groups from a point of view of the supporting services of distributed application, When developing distributed application, by using our tool, server programming developer implements objects in each server system, next registers the properties to need for service provision to the object group. Client programming developer can also develop client program easily by obtaining the access right for the object or the object group and using the properties of objects with the access right permitted to the client. For providing above application developing environment in this paper. we described the definition of object group, the architecture of the distributed object group framework which our tool supports, and its functionalities, then specified the 3 GUI environments of DPDT implemented for providing efficient interfaces between the distributed object group and distributed applications. Finally, by using the DPDT, we showed the group register/withdraw and the access right grant procedure of objects which are server programs, the developing process of client program, and the executing results of the distributed application developed.

  • PDF

Application and Evaluation of Remotely Sensed Data in Semi-Distributed Hydrological Model (준 분포형 수문모형에서의 원격탐사자료의 적용 및 평가)

  • Kim, Byung-Sik;Kim, Kyung-Tak;Park, Jung-Sool;Kim, Hung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.144-159
    • /
    • 2006
  • Hydrological models are tools intended to realistically represent the basin's complex system in which hydrological characteristics result from a number of physical, vegetative, climatic, and anthropomorphic factors. Spatially distributed hydrological models were first developed in the 1960s, Remote sensing(RS) data and Geographical Information System(GIS) play a rapidly increasing role in the field of hydrology and water resources development. Although very few remotely sensed data can applied in hydrology, such information is of great. One of the greatest advantage of using RS data for hydrological modeling and monitoring is its ability to generate information in spatial and temporal domain, which is very crucial for successful model analysis, prediction and validation. In this paper, SLURP model is selected as semi-distributed hydrological model and MODIS Leaf Area Index(LAI), Normalized Difference Vegetation Index(NDVI) as Remote sensing input data to hydrological modeling of Kyung An-chen basin. The outlet of the Kyung An stage site was simulated, We evaluated two RS data, based on ability of SLURP model to simulate daily streamflows, and How the two RS data influence the sensitivity of simulated Evapotranspiration.

  • PDF

Machine Learning-based Phase Picking Algorithm of P and S Waves for Distributed Acoustic Sensing Data (분포형 광섬유 센서 자료 적용을 위한 기계학습 기반 P, S파 위상 발췌 알고리즘 개발)

  • Yonggyu, Choi;Youngseok, Song;Soon Jee, Seol;Joongmoo, Byun
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.177-188
    • /
    • 2022
  • Recently, the application of distributed acoustic sensors (DAS), which can replace geophones and seismometers, has significantly increased along with interest in micro-seismic monitoring technique, which is one of the CO2 storage monitoring techniques. A significant amount of temporally and spatially continuous data is recorded in a DAS monitoring system, thereby necessitating fast and accurate data processing techniques. Because event detection and seismic phase picking are the most basic data processing techniques, they should be performed on all data. In this study, a machine learning-based P, S wave phase picking algorithm was developed to compensate for the limitations of conventional phase picking algorithms, and it was modified using a transfer learning technique for the application of DAS data consisting of a single component with a low signal-to-noise ratio. Our model was constructed by modifying the convolution-based EQTransformer, which performs well in phase picking, to the ResUNet structure. Not only the global earthquake dataset, STEAD but also the augmented dataset was used as training datasets to enhance the prediction performance on the unseen characteristics of the target dataset. The performance of the developed algorithm was verified using K-net and KiK-net data with characteristics different from the training data. Additionally, after modifying the trained model to suit DAS data using the transfer learning technique, the performance was verified by applying it to the DAS field data measured in the Pohang Janggi basin.

Development of a Distributed Rainfall-Runoff System for the Guem River Basin Using an Object-oriented Hydrological Modeling System (객체지향형 수문 모델링 시스템을 이용한 금강유역 분포형 강우-유출 시스템의 개발)

  • Lee, Gi-Ha;Takara, Kaoru;Jung, Kwan-Sue;Kim, Jeong-Yup;Jeon, Ja-Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.149-153
    • /
    • 2009
  • Physics-based distributed rainfall-runoff models are now commonly used in a variety of hydrologic applications such as to estimate flooding, water pollutant transport, sedimentation yield and so on. Moreover, it is not surprising that GIS has become an integral part of hydrologic research since this technology offers abundant information about spatial heterogeneity for both model parameters and input data that control hydrological processes. This study presents the development of a distributed rainfall-runoff prediction system for the Guem river basin ($9,835km^2$) using an Object-oriented Hydrological Modeling System (OHyMoS). We developed three types of element modules: Slope Runoff Module (SRM), Channel Routing Module (CRM), and Dam Reservoir Module (DRM) and then incorporated them systemically into a catchment modeling system under the OHyMoS. The study basin delineated by the 250m DEM (resampled from SRTM90) was divided into 14 midsize catchments and 80 sub-catchments where correspond to the WAMIS digital map. Each sub-catchment was represented by rectangular slope and channel components; water flows among these components were simulated by both SRM and CRM. In addition, outflows of two multi-purpose dams: Yongdam and Daechung dams were calculated by DRM reflecting decision makers' opinions. Therefore, the Guem river basin rainfall-runoff modeling system can provide not only each sub-catchment outflow but also dam inand outflow at one hour (or less) time step such that users can obtain comprehensive hydrological information readily for the effective and efficient flood control during a flood season.

  • PDF

Distributed Coordination of Project Schedule Changes by Using Software Agents (소프트웨어 에이전트를 이용한 건설공사 공정관리의 분산화)

  • Kim Kee-soo
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.85-90
    • /
    • 2002
  • In the construction industry, projects are becoming increasingly large and complex, involving multiple subcontractors. Traditional centralized coordination techniques used by the general contractors become less effective as subcontractors perform most work and provide their own resources. When subcontractors cannot provide enough resources, they hinder their own performance as well as that of other subcontractors and ultimately the entire project. Thus, construction projects need a new distributed coordination approach wherein all of the concerned subcontractors can reschedule a project dynamically. To enable the new distributed coordination of project schedule changes, I developed a novel agent-based compensatory negotiation methodology, which allows software agents to simulate negotiations on behalf of their human subcontractors. This research formalizes the necessary steps that would help construction project participants to increase the efficiency of their resource use, which in turn will enhance successful completions of whole projects.

  • PDF

The Development of Mobile Grid System and Performance Evaluation (모바일 그리드 시스템의 개발 및 성능평가)

  • Kim Tae-Kyung;Kim Hee-Seung;Lee Hyun-Joo;Chung Tai-Myung
    • The KIPS Transactions:PartC
    • /
    • v.12C no.4 s.100
    • /
    • pp.581-588
    • /
    • 2005
  • The performance of mobile devices and wireless networks is improved rapidly and Mobility management skills such as Mobile IP and ad-hoc technology were developed. So the requirement of processing the distributed computing is highly increased in any place and any time or in the state of movement. Therefore we studied the mobile grid system to process the distributed applications properly in wireless networks. In addition to typical computational resources, Mobile Grid brings new resources such as sensor, mobile devices or other wireless devices to distributed computing for the purpose of resource-sharing. In this paper, we design and implement the mobile grid system in wireless lan network environment for the providing the grid service. Also, we evaluate the performance of mobile grid system using the processing the distributed applications in implemented mobile grid environments.

A Digital Elevation Analysis : Sparially Distributed Flow Apportioning Algorithm (수치 고도 분석 : 분포형 흐름 분배 알고리즘)

  • Kim, Sang-Hyeon;Kim, Gyeong-Hyeon;Jeong, Seon-Hui
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.3
    • /
    • pp.241-251
    • /
    • 2001
  • A flow determination algorithm is proposed for the distributed hydrologic model. The advantages of a single flow direction scheme and multiple flow direction schemes are selectively considered to address the drawbacks of existing algorithms. A spatially varied flow apportioning factor is introduced in order to accommodate the accumulated area from upslope cells. The channel initiation threshold area(CIT) concept is expanded and integrated into the spatially distributed flow apportioning algorithm in order to delineate a realistic channel network. An application of a field example suggests that the linearly distributed flow apportioning scheme provides some advantages over existing approaches, such as the relaxation of over-dissipation problems near channel cells, the connectivity feature of river cells, the continuity of saturated areas and the negligence of the optimization of few parameters in existing algorithms. The effects of grid sizes are explored spatially as well as statistically.

  • PDF

Development of Distributed Rainfall-Runoff Model Using Multi-Directional Flow Allocation and Real-Time Updating Algorithm (II) - Application - (다방향 흐름 분배와 실시간 보정 알고리듬을 이용한 분포형 강우-유출 모형 개발(II) - 적용 -)

  • Kim, Keuk-Soo;Han, Kun-Yeun;Kim, Gwang-Seob
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.3
    • /
    • pp.259-270
    • /
    • 2009
  • The applicability of the developed distributed rainfall runoff model using a multi-directional flow allocation algorithm and a real-time updating algorithm was evaluated. The rainfall runoff processes were simulated for the events of the Andong dam basin and the Namgang dam basin using raingauge network data and weather radar rainfall data, respectively. Model parameters of the basins were estimated using previous storm event then those parameters were applied to a current storm event. The physical propriety of the multi-directional flow allocation algorithm for flow routing was validated by presenting the result of flow grouping for the Andong dam basin. Results demonstrated that the developed model has efficiency of simulation time with maintaining accuracy by applying the multi-directional flow allocation algorithm and it can obtain more accurate results by applying the real-time updating algorithm. In this study, we demonstrated the applicability of a distributed rainfall runoff model for the advanced basin-wide flood management.

Analysis of Vegetation and Vegetation-Environment Relationships in Main Wild Vegetables of Ulleungdo in Korea -Vegetation of herb layer of the Aster glehni, Allium ochotense, and Aruncus sylvester - (울릉도 주요 산채류 자생지의 식생 및 환경과의 상관관계 분석 -섬쑥부쟁이, 울릉산마늘, 눈개승마의 초본층 식생을 중심으로-)

  • Lee, Joong-Ku;Kim, Hyoun-Sook;Lee, Sang-Myong;Park, Gwan-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.6
    • /
    • pp.71-82
    • /
    • 2018
  • This study was conducted to provide ecological basic data that use to establish environmental conditions for cultivation of wild vegetables in 2016-2018. Therefore, we investigated the vegetation structure and the correlation between the community structure and the environmental factors for natural habitats of wild vegetables(Aster glehni, Allium ochotense, and Aruncus sylvester) distributed in Ulleungdo. As a result of population and gradient analysis, the vegetation was classified into Aster glehni community, Allium ochotense community, and Aruncus sylvester community. We confirmed that the classification by population analysis was consistent with that by TWINSPAN method, suggesting that they were complemented each other. The importance value of Aster glehni was the highest in all communities, followed by Aruncus sylvester, Allium ochotense, Hydrangea petiolaris, Dryopteris crassirhizoma, Asperula ldorata, Phryma leptostachya var. asiatica, Disporum viridrescens, Hedera rhombea, Anthriscus sylvestris, and Hepatica maxima. According to the results of DCCA ordination analysis, among those communities, the Aster glehni community was distributed in soil where the nutrition including T-N and O.M. were intermediate. The Allium ochotense community was distributed on the a little high northern slope at the highest altitude where the CEC and O.M. were the highest, and other nutrition and pH were low. The Aruncus sylvester was distributed on high slope and altitude on which the amount of exchangeable cation such as $Ca^{{+}{+}}$, $Mg^{{+}{+}}$ and pH were high, and the CEC, $P_2O_5$, and O.M. were the lowest.

Application of MPI Technique for Distributed Rainfall-Runoff Model (분포형 강우유출모형 병렬화 처리기법 적용)

  • Chung, Sung-Young;Park, Jin-Hyeog;Hur, Young-Teck;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.8
    • /
    • pp.747-755
    • /
    • 2010
  • Distributed Models have relative weak points due to the amount of computer memory and calculation time required for calculating water flow using a numerical analysis based on kinematic wave theory when compared to the conceptual models used so far. Typically, the distributed models have been mainly applied to small basins. It was necessary to decrease the resolution of the grid to make it applicable for large scale watersheds, and because it would take up too much time to calculate using a higher resolution. That has been one of the more difficult factors in applying the model for actual work. In this paper, MPI (Message Passing Interface) technique was applied to solve the problem of calculation time as it is one of the demerits of the distributed model for performing physical and complicated numerical calculations for large scale watersheds. The comparison studies were performed a single domain and a divided small domain in Yongdam Dam watershed in case of typoon 'Ewiniar' at 2006. They were compared to analyze the application effects of parallelization technique. As a result, a maximum of 10 times the amount of calculation time was saved but keeping the level of quality for discharge by using parallelization code rather than a single processor.