• 제목/요약/키워드: Distributed resource allocation

검색결과 114건 처리시간 0.031초

An Efficient Scheduling Method for Grid Systems Based on a Hierarchical Stochastic Petri Net

  • Shojafar, Mohammad;Pooranian, Zahra;Abawajy, Jemal H.;Meybodi, Mohammad Reza
    • Journal of Computing Science and Engineering
    • /
    • 제7권1호
    • /
    • pp.44-52
    • /
    • 2013
  • This paper addresses the problem of resource scheduling in a grid computing environment. One of the main goals of grid computing is to share system resources among geographically dispersed users, and schedule resource requests in an efficient manner. Grid computing resources are distributed, heterogeneous, dynamic, and autonomous, which makes resource scheduling a complex problem. This paper proposes a new approach to resource scheduling in grid computing environments, the hierarchical stochastic Petri net (HSPN). The HSPN optimizes grid resource sharing, by categorizing resource requests in three layers, where each layer has special functions for receiving subtasks from, and delivering data to, the layer above or below. We compare the HSPN performance with the Min-min and Max-min resource scheduling algorithms. Our results show that the HSPN performs better than Max-min, but slightly underperforms Min-min.

위성/지상 겸용 망 내 간섭을 고려한 최적 자원 할당 방식 (An Efficient Resource Allocation Scheme For An Integrated Satellite/Terrestrial Networks)

  • 박운희;김희욱;오대섭;장대익
    • 한국통신학회논문지
    • /
    • 제40권2호
    • /
    • pp.298-306
    • /
    • 2015
  • 본 논문에서는 위성/지상 겸용 망에서 위성 망과 지상 망간 주파수를 효율적으로 공유할 수 있도록 기여하는 최적의 자원 할당 방식에 대한 성능을 비교 분석한다. 제안된 방식은 동일한 주파수를 사용하는 위성 빔과 인접 빔 내 지상 셀 시스템 간 발생할 수 있는 간섭을 경감시킴과 동시에 망 내 발생한 트래픽 요구량을 만족시키기 위해 필요한 전력을 최적화하여 주파수 자원 이용 효율을 향상시킬 수 있다. 이와 같은 겸용 망에서는 각 시스템 간 상이한 트래픽 환경 및 업/하향링크 환경에 따라 주파수를 공유하는 위성과 지상 시스템 간 간섭 환경이 달라질 수 있다. 따라서 본 논문에서는 위성/지상 겸용 망에서의 업/하향링크 환경을 가정한 성능을 비교 분석함으로써 보다 실제 통신 환경에서의 제안된 알고리즘에 대한 성능의 우수성을 보인다.

BaaS(BIM as a Service)를 위한 분산 클라우드 기반의 BIM 플랫폼 리소스 관리 방법 연구 (BIM Platform Resource Management for BaaS(BIM as a Service) in Distributed Cloud Computing)

  • 손아영;신재영;문현석
    • 한국BIM학회 논문집
    • /
    • 제10권3호
    • /
    • pp.43-53
    • /
    • 2020
  • BIM-based Cloud platform gained popularity coupled with the convergence of Fourth Industrial Revolution technology. However, most of the previous work has not guaranteed sufficient efficiency to meet user requirements according to BIM service. Furthermore, the Cloud environment is only used as a server and it does not consider cloud characteristics. For the processing of High Capacity Data like BIM and using seamless BIM service, Resource management technology is required in the cloud environment. In this paper, to solve the problems, we propose a BIM platform for BaaS and an efficient resource allocation scheme. We also proved the efficiency of resource for the proposed scheme by using existing schemes. By doing this, the proposed scheme looks forward to accelerating the growth of the BaaS through improving the user experience and resource efficiency.

Dynamic Resource Allocation of Random Access for MTC Devices

  • Lee, Sung-Hyung;Jung, So-Yi;Kim, Jae-Hyun
    • ETRI Journal
    • /
    • 제39권4호
    • /
    • pp.546-557
    • /
    • 2017
  • In a long term evolution-advanced (LTE-A) system, the traffic overload of machine type communication devices is a challenge because too many devices attempt to access a base station (BS) simultaneously in a short period of time. We discuss the challenge of the gap between the theoretical maximum throughput and the actual throughput. A gap occurs when the BS cannot change the number of preambles for a random access channel (RACH) until multiple numbers of RACHs are completed. In addition, a preamble partition approach is proposed in this paper that uses two groups of preambles to reduce this gap. A performance evaluation shows that the proposed approach increases the average throughput. For 100,000 devices in a cell, the throughput is increased by 29.7% to 114.4% and 23.0% to 91.3% with uniform and Beta-distributed arrivals of devices, respectively.

RM 스케쥴링과 Lock-Free 공유개체에 의한 실시간 시뮬레이션 (The Real-Time Constructive Simulation With the RM scheduling and Lock-free Shared Objects)

  • 박현규
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.519-522
    • /
    • 1998
  • The Constructive Battle simulation Model is very important to the recent military training for the substitution of the field training. However, real battlefield systems operate under rea-time conditions, they are inherently distributed, concurrent and dynamic. In order to reflect these properties by the computer-based simulation systems which represent real world processes, we have been developing constructive simulation model for several years. The constructive simulation system is one of the famous real-time system software, nd the one common feature of all real-time systems is defined as the correctness of the system depend not only on the logical result of computation, but also on the time at which the results are produced. Conventionally, scheduling and resource allocation activities which have timing constraints are major problem of real-time computing systems. To overcome these constraints, we elaborated on these issues and developed the simulation system on commercially available hardware and operating system with lock-free resource allocation scheme and rae monotonic scheduling.

  • PDF

Resource Allocation in Multi-Domain Networks Based on Service Level Specifications

  • Avallone Stefano;D'Antonio Salvatore;Esposito Marcello;Romano Simon Pietro;Ventre Giorgio
    • Journal of Communications and Networks
    • /
    • 제8권1호
    • /
    • pp.106-115
    • /
    • 2006
  • The current trend toward the utilization of the Internet as a common means for the offer of heterogeneous services imposes to address the issues related to end-to-end service assurance in the inter-domain scenario. In this paper, we first present an architecture for service management in networks based on service level specifications (SLS). The architecture is designed to be independent both of the specific network technology adopted and of the high level service semantics. Then, we focus on a specific functionality of the proposed architecture: Resource allocation in the multi-domain scenario. A distributed admission control algorithm is introduced, its complexity is evaluated and a comparison with related solutions is provided.

Resource Allocation in Wireless Ad Hoc Networks Using Game Theory

  • Lee, Ki-Hwan;Halder, Nilimesh;Song, Ju-Bin
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.195-196
    • /
    • 2007
  • The purpose of this paper is to analyze the resource allocation problem in a self organizing network from the viewpoint of game theory. The main focus is to suggest the model and analyze a power control algorithm in wireless ad-hoc networks using non cooperative games. Our approach is based on a model for the level of satisfaction and utility a wireless user in a self organizing network derives from using the system. Using this model, we show a distributed power control scheme that maximizes utility of each user in the network. Formulating this as a non-cooperative game we will show the feasibility of such power control as well as existence of the Nash Equilibrium achieved by the non-cooperative game.

  • PDF

Dynamic Multi-frame Transmission Technology Using the WiMedia MAC for Multi-hop N-screen Services

  • Hur, Kyeong
    • Journal of information and communication convergence engineering
    • /
    • 제14권1호
    • /
    • pp.21-25
    • /
    • 2016
  • N-screen is a promising technology to improve support for multimedia multicasting, content sharing, content mobility, media scalability, and seamless mobility. In this paper, the WiMedia distributed-MAC (D-MAC) protocol is adopted for development of a seamless N-screen wireless service. Furthermore, to provide a multi-hop, one source multi-use N-screen service through point to point streaming in a seamless D-MAC protocol, a dynamic multi-frame transmission technology is proposed. In this technology, a dynamic time slot allocation scheme and a multi-hop resource reservation scheme are combined. In the proposed dynamic time slot allocation scheme, two thresholds, a hard threshold and a soft threshold, are included to satisfy the power consumption and delay requirements. A multi-frame DRP reservation scheme is proposed to minimize end-to-end delay during the multi-hop transmissions between N-screen devices. The proposed dynamic multi-frame transmission scheme enhances N-screen performance in terms of the multi-hop link establishment success rate and link establishment time compared to the conventional WiMedia D-MAC system.

Design of Distributed Cloud System for Managing large-scale Genomic Data

  • Seine Jang;Seok-Jae Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권2호
    • /
    • pp.119-126
    • /
    • 2024
  • The volume of genomic data is constantly increasing in various modern industries and research fields. This growth presents new challenges and opportunities in terms of the quantity and diversity of genetic data. In this paper, we propose a distributed cloud system for integrating and managing large-scale gene databases. By introducing a distributed data storage and processing system based on the Hadoop Distributed File System (HDFS), various formats and sizes of genomic data can be efficiently integrated. Furthermore, by leveraging Spark on YARN, efficient management of distributed cloud computing tasks and optimal resource allocation are achieved. This establishes a foundation for the rapid processing and analysis of large-scale genomic data. Additionally, by utilizing BigQuery ML, machine learning models are developed to support genetic search and prediction, enabling researchers to more effectively utilize data. It is expected that this will contribute to driving innovative advancements in genetic research and applications.

심층강화학습 기반 분산형 전력 시스템에서의 수요와 공급 예측을 통한 전력 거래시스템 (Power Trading System through the Prediction of Demand and Supply in Distributed Power System Based on Deep Reinforcement Learning)

  • 이승우;선준호;김수현;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권6호
    • /
    • pp.163-171
    • /
    • 2021
  • 본 논문은 분산형 전력 시스템에서 심층강화학습 기반의 전력 생산 환경 및 수요와 공급을 예측하며 자원 할당 알고리즘을 적용해 전력거래 시스템 연구의 최적화된 결과를 보여준다. 전력 거래시스템에 있어서 기존의 중앙집중식 전력 시스템에서 분산형 전력 시스템으로의 패러다임 변화에 맞추어 전력거래에 있어서 공동의 이익을 추구하며 장기적인 거래의 효율을 증가시키는 전력 거래시스템의 구축을 목표로 한다. 심층강화학습의 현실적인 에너지 모델과 환경을 만들고 학습을 시키기 위해 날씨와 매달의 패턴을 분석하여 데이터를 생성하며 시뮬레이션을 진행하는 데 있어서 가우시안 잡음을 추가해 에너지 시장 모델을 구축하였다. 모의실험 결과 제안된 전력 거래시스템은 서로 협조적이며 공동의 이익을 추구하며 장기적으로 이익을 증가시킨 것을 확인하였다.