106

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. 1, MARCH 2006

Resource Allocation in Multi-Domain Networks Based on
Service Level Specifications

Stefano Avallone, Salvatore D’ Antonio, Marcello Esposito, Simon Pietro Romano, and Giorgio Ventre

Abstract: The current trend toward the utilization of the Inter-
net as a common means for the offer of heterogeneous services im-
poses to address the issues related to end-to-end service assurance
in the inter-domain scenario. In this paper, we first present an ar-
chitecture for service management in networks based on service
level specifications (SLS). The architecture is designed to be inde-
pendent both of the specific network technology adopted and of
the high level service semantics. Then, we focus on a specific func-
tionality of the proposed architecture: Resource allocation in the
multi-domain scenario. A distributed admission control algorithm
is introduced, its complexity is evaluated and a comparison with
related solutions is provided.

Index Terms: Inter-domain operation, network management, ser-
vice level specification (SLS).

1. INTRODUCTION

Network management has represented one of the major is-
sues since the Internet has started growing from a small research
network to the world-wide infrastructure available nowadays.
With the introduction of new paradigms different than the orig-
inal best effort, such task has become harder and harder to ac-
complish in an effective way. Network administrators cannot
refrain from taking into consideration the co-existence on the
same physical architecture of a number of heterogeneous ser-
vices, each imposing different requirements in terms of traffic
patterns and needed network resources.

We propose in this work an architecture exploiting a com-
ponent based model, where roles and interfaces are clearly de-
fined. Such an architecture consists of a stack of three layers,
each perceiving quality of service (QoS) concepts at a differ-
ent level of abstraction. The highest one is characterized by
the maximum degree of generality and is totally independent
of the QoS paradigm adopted, of the underlying network tech-
nology and of the physical characteristics of the single nodes as
well. Thus, decisions taken within the boundary of this layer
are based upon a minimal set of assumptions about the transport
infrastructure. This upper layer is also the place where we look
after two fundamental aspects: Time as a QoS parameter and
inter-domain operation. Lower layers progressively reduce the
level of abstraction in order to have, eventually, a set of traffic
control commands for network devices configuration.

Manuscript received April 29, 2004; approved for publication by Danny Raz,
Division I Editor, July 15, 2005.

S. Avallone, S. P. Romano, and G. Ventre are with the Dipartimento di
Informatica e Sistemistica, Universita di Napoli Federico II, Italy, email:
{stavallo, spromano, giorgio} @unina.it.

S. D’Antonio is with the ITEM Laboratory, Consorzio CINI, Italy, email:
sdantonio @ napoli.consorzio-cini.it.

M. Esposito is with the CRIAI, ltaly, email: m.esposito@criai.it.

After introducing the overall architecture, we dig into the de-
tails of the inter-domain resource allocation process. In particu-
lar, we propose a distributed admission control algorithm which
takes into account the coexistence of multiple domains along the
end-to-end path connecting the service requester to the service
provider.

The major obstacles encountered by the wide deployment of
appropriate mechanisms for end-to-end QoS provisioning dig
their roots in barely political reasons, rather than either tech-
nological or scientific ones. Hence, it is a mandatory require-
ment for any deployable solution to take into account the explicit
wills of the various stakeholders involved in the service delivery
chain. The management architecture we propose, together with
the algorithm we devised for it, has been conceived at the outset
to tackle exactly the above issue. More precisely,

e 1o global knowledge of the state of the network is requested;

e anetwork manager is not required to publish any information
related to the inner structure of his own network, as well as
to the specific policies he adopts (topology, routing, traffic
engineering, charging, etc.);

e a network manager can embrace the proposed management
architecture regardless of both the underlying transport tech-
nology and the protocols employed in the network (provided
that he somehow ensures QoS guarantees in his own do-
main); '

o the network providers are not compelled to converge on a
unique network technology: The higher layers of the man-
agement architecture provide a uniform interface ensuring
interoperability and shielding from the lower-level techno-
logical details;

e the management architecture allows for inter-provider coop-
eration while at the same time leaving intra-domain manage-
ment solely under the responsibility of the domain’s owner.
In other words, each physical device does not have to be
open to configuration from other entities but the owner of
the domain in which the device itself is located.

The above points are recognized as key enabling factors for
any provider wishing to effectively administrate his network
while contributing to the QoS-aware service delivery chain. It
will be shown in this paper that the architecture we propose pro-
vides full support to such enabling factors.

The paper is organized in seven sections. Section II pro-
vides some background information about the concept of service
level specification (SLS). In Section III, our three-layer archi-
tecture is illustrated. Section I'V focuses on the issues related to
SLS-based multi-domain admission control. In particular, Sec-
tion IV-E provides a complexity analysis of the proposed algo-
rithm. Section V shows how the proposed algorithm lends itself
to a distributed implementation. Section VI draws a compari-
son between our solution and previous work related to the same

1229-2370/06/$10.00 (© 2006 KICS

AVALLONE et al.: RESOURCE ALLOCATION IN MULTI-DOMAIN NETWORKS BASED... 107

SLS = Service level specification
RM = Resource mediator
NC = Network controller

RM layer !
Network independent ||
Device independent |

Network dependent
Device independent
[

NC layer }

& [emgn-¥) >
PEP PIB}| PEP

COPS API COPS APH

PDP = Policy decision point
PEP = Policy enforcement point

PIB = Policy information base

NDPR = Network dep. policy repository

~ TN

= [
SLS N
ol e
Pl

|

Next-hop
AS

-I Device controller |]}

J-Tc APl

Netwaork depend M i T

lrc APt

Dovice dependent

Device layer
’ Traffic control ﬁ;

|

|

|

|

|

I
[_I Device controller U.—
| |
|

|

{

Router

j i
} Traffic control |
Vo

Router

|
I
!
|
I
|
|
I
[
I
I
|
I
|

“ /

¥~ Autonomous system -

Fig. 1. The reference network architecture.

topic. Finally, Section VII contains some concluding remarks.

II. THE SLS AS SERVICE ABSTRACTION

The aim to design a network architecture capable to offer
generic services requires a thorough definition of what a ser-
vice is. The service provider and the network provider, which
we consider as two neatly separated actors, have to agree on
such a definition in order to correctly carry out the negotiation
of a service instance. Hence, a SLS is a fundamental concept
since it contains the definition of an abstract service a network
can offer, at a level of generality which is as high as possible: A
network provider can offer all what can fit inside an SLS and no
more than this.

A formal definition of the concept of SLS has been recently
provided [2]. The fields it contains are scope, flow identifica-
tion, traffic envelope and traffic conformance, excess treatment,
performance guarantees, service schedule, and reliability. Four
of these fields play a major role during the service negotiation
phase.

e Scope, determining the service ingress and egress points—
that is, where the service has to be enforced;

¢ traffic envelope, containing a characterization of the traffic
associated with the service instance—that is, what service
has to be enforced;

e performance guarantees, specifying the guarantees associ-
ated with the service (in the form of maximum delay, jitter,
packet loss, and throughput)—that is, sow the service has to
be enforced;

e service schedule, indicating the time schedule related to the
service—that is, when the service has to be enforced.

In the following, we take for granted the existence of an SLS

compliant with the four fields above. Under this assumption,

the service negotiation phase can be triggered by submitting an

SLS to a network provider and subsequently waiting for a re-

sponse that indicates whether the related service instance has

been accepted.

III. THE REFERENCE NETWORK ARCHITECTURE

As shown in Fig. 1, starting from an SLS instance (coming
from a service provider not shown in the picture), we cross all of
the management framework components (resource mediator—
RM, network controller—NC, devices) in order to arrive at the
network devices and appropriately configure them. In the fol-
lowing, we will focus on each of the layers of our architecture.

A. The RM Layer

The main task of the uppermost layer is to receive SLSs
from network clients; hence, the upper layers are provided with
an interface for SLS submission. Furthermore, this layer owns
and manages the SLS repository; this is necessary not only for
merely practical reasons, but also for administrative purposes.
Since SLSs are intrinsically time dependent, the uppermost layer
has full knowledge of what is going to happen in the future net-
work’s life. This makes the RM the best candidate to manage
the time-dependent triggers raised by the SLS repository.

Multi-domain network management is another important
functionality which will be herein shown as naturally pertain-
ing to this layer. During the negotiation of an SLS spanning
over multiple domains, a certain number of RMs—those belong-
ing to the crossed domains—must be involved in the negotiation
phase. Each RM in the chain is in charge of assuring that part
of the service pertaining to its own domain. How is it possible
to let different RMs cooperate in order to reach end-to-end ser-
vice enforcement? An answer can be found if we think that all
of the RMs are able to accept SLSs from network clients and
nothing prevents an RM from being a network client of a neigh-
boring RM. This consideration suggests the adoption of a cas-
cade model where a multi-domain SLS can be recursively split
in two parts: A single domain SL.S plus a remaining part that
has to be enforced elsewhere, i.e., over one or more downstream

108

Service
provider

Fig. 2. An example of multi-domain SLS splitting.

domains. Under this light, end-to-end service configuration can
be achieved by composing one or more edge-to-edge' services,
each described by means of a single-domain SLS instance.

As an example, let us refer to Fig. 2. The figure shows multi-
domain SLS processing in case of three different autonomous
systems, each managed by a different RM-NC pair. In the pic-
ture, only the boundary routers (A, B, - - -, F') are visible. SLS;
arrives at RM; from a service provider requesting a specific ser-
vice that has to be instantiated between points A and F'. Hence,
RM; asks NC; information about the boundary router toward
the destination F'. Based on the received response, SLS; is split
in two parts: SLS,; and SLS3. The former, related to a single
domain, is delivered to NC; for further network-specific pro-
cessing [6]; the latter is delivered to RMy which, in turn, recog-
nizes it as a multi-domain SLS and starts a new splitting oper-
ation. Only local SLSs (SLSs, SLS4, and SLSg) are delivered
to the NCs in order to be processed by the intra-domain admis-
sion control algorithm. With respect to charging, each RM in the
chain just interacts with its direct neighbors: It pays for the ser-
vice it is receiving from the downstream neighbor (if any) and
gets paid for the service it is offering to the upstream neighbor
(either the previous RM along the chain or the service provider
that triggered the overall process). Thanks to this example, we
can now state that the RM is in charge of addressing the inter-
domain issues.

Summarizing the considerations above, the main features of
the RM layer are
e SLS repository management;

e sensitivity to asynchronous time events raised by the SLS
repository;

e inter-domain communication.

We just remark that the RM is completely unaware of both net-

work QoS paradigm adopted and network topology.

B. The NC Layer

The central layer of the architecture encapsulates the network-
specific functionality. The NC is a logically centralized compo-
nent that presides over the autonomous system to which it be-
longs. Its implementation is strictly dependent on the QoS net-
work paradigm adopted. Since different networks need differ-

1By definition, edge-to-edge refers to that part of a service falling between
two boundary routers within the same AS.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. 1, MARCH 2006

ent NC implementations, a brand new NC must be implemented
whenever a new network technology is adopted. Hence, we put
outside the NC all of the network independent functions such
as inter-domain and time dependency. This aspect has another
important side. Different ASs are not compelled to converge to
a unique QoS paradigm thanks to the compatibility at the RM
layer (which completely hides the specific underlying network
technology). Thus, each AS inside a network can choose its fa-
vorite QoS paradigm, regardless of the solutions implemented
within other ASs.

The main functionality of the NC layer is intra-domain admis-
sion control (AC). Since here the underlying technology (Diff-
Serv, MPLS, overprovisioning, etc.) is well known, the NC is
able to verify whether a new service stemming from an SLS
can be accepted without jeopardizing the allocated resources.
For example, in the case of a DiffServ network, a new request
will be mapped onto a set of nodes—according to the routing
protocol—and onto a DiffServ class of service—depending on
the guarantees needed by the service. If enough resources are
available for the chosen class along the entire path identified,
AC is successful. Otherwise, a negative response is returned.
For MPLS networks, AC is based on the search of a suitable
label switched path. In the case of a DiffServ over MPLS net-
work the degrees of freedom are even more, and the AC has
more chances to give a successful response. Finally, for a simple
overprovisioned network, the AC algorithm is a dummy routine
which always returns a positive answer.

Unlike the RM, from the NC standpoint, admission control
represents a transaction that can be decomposed in a set of sin-
gle requests to the nodes involved in the intra-domain service
provisioning chain. Only if all of the requests give a successful
response, the overall AC succeeds. Then, we might say that the
NC performs an edge-to-edge AC by appropriately combining
a set of point-to-point ACs. Again, this gives the flavor of how
the level of abstraction progressively decreases when proceed-
ing from the uppermost layer toward the lowest one.

Communication with the network nodes can be accomplished
by means of the common open policy service (COPS) proto-
col [5] which introduces the policy decision point (PDP) and the
policy enforcement point (PEP) entities. The PDP is a central-
ized entity in charge of taking decisions to be sent to the PEPs
for enforcement. This paradigm perfectly fits the approach we
chose: The NC acts as a PDP and sends its decisions to the net-
work nodes acting as PEPs.

C. The Devices Layer

The lowermost layer is populated with the set of network
devices, each one independent of the others. This layer per-
forms the lowest level actions. The main service it offers is the
translation of the network configuration policies, formulated at
the abstract level of the QoS paradigm adopted, into configu-
ration commands whose syntax depends on the network device
implementation. For example, an MPLS network can be built
of different label switched routers from different manufactur-
ers (e.g., Cisco, Linux, etc.). Thanks to this layer, the network
is still seen by the NC as a homogeneous MPLS network, re-
gardless of the implementation differences. The policies flowing
down from the NC toward the network nodes will be formulated

AVALLONE et al.: RESOURCE ALLOCATION IN MULTI-DOMAIN NETWORKS BASED... 109

s

at the MPLS level of abstraction (e.g., “bind LSP with label X to
outgoing interface Y”’). The device controller (DC) component
on each network element is in charge of translating the policies
into configuration commands to be enforced on the traffic con-
trol modules through their API. We just point out that this kind
of messages can also flow in the opposite direction; for instance,
this happens in the case of data related to the monitoring of the
devices. Also in this case, starting from local statistics, it is pos-
sible for the NC to evaluate the edge-to-edge service behavior
and by RMs interaction the level of abstraction can be further
increased so to reach an end-to-end service performance evalu-
ation.

As far as implementation issues, a different device controller
must be designed for each different QoS paradigm and for each
different device model. Anyway, such DCs contain no more
than mapping rules allowing the translation of policies into traf-
fic control commands.

IV. MULTI-DOMAIN ADMISSION CONTROL

In this section, we will dig into the details of a relevant func-
tionality of the framework: Multi-domain, SLS-based admis-
sion control. We will explain how the SLS parameters can be
distributed over multiple domains ensuring both the respect of
the negotiated guarantees and the minimization of the afforded
costs.

A. The SLS Parameters Distribution Problem

In the previous sections, we introduced the SLS splitting pro-
cess: An SLS spanning over multiple domains can be split in a
set of intra-domain SLSs to be enforced in a centralized fash-
ion. Unfortunately, the SLS conveys an end-to-end view of the
service it describes. For example, the delay specified in a multi-
domain SLS refers to the total amount of delay for each packet,
from the network ingress-point to the egress-point, regardless of
the number of crossed network domains. Therefore, each au-
tonomous system adds its own contribution to the overall delay
specified in the SLS. A problem comes to the fore: Since the
delay is an additive parameter, how is it possible to distribute it
over the crossed domains?

One might think to equally distribute the delay among the
domains. For example, if the total delay specified by SLS; in
Fig. 2 were equal to 100 ms from A to F', the three ASs might
be asked to guarantee a delay of 33 ms each. In general, this
strategy does not represent the optimal one. In fact, the ASs sell
their resources at different prices. Hopefully, the cheaper the
AS, the more the resources bought from it.

Let’s return again to our well-known 3-domains example. A
typical situation is depicted in Fig. 3. An SLS asking for an
overall delay of 100 ms and a total jitter of 60 ms has to be
enforced over three domains. We can imagine that a different
number of service levels is available at each domain. Each ser-
vice level is associated with a different edge-to-edge (i.e., AS)
delay-jitter pair and a different cost. For instance, the second
AS has 3 available service levels; a flow associated with the first
one will be subject to a delay of 8 ms (from C to D), a jitter
of 11 ms and charged a cost of 10. The problem is to find the
combination of service levels that provides the requested guar-

FromAto F
Delay <100 ms
Jitter <60 ms

Delay: 5 ms Delay: 8 ms Delay: 5 ms
Jitter: 8 ms Jitter: 11 ms Jitter: 8 ms
Cost: 10 Cost: 10 Cost: 15
Delay: 10 ms Delay: 30 ms Delay: 9 ms
Jitter: 10 ms Jitter: 20 ms Jitter: 10 ms
Cost: 8 Cost: 5 Cost: 12
Delay: 30 ms Delay: 50 ms Delay: 40 ms
Jitter: 17 ms Jitter: 30 ms Jitter: 8 ms
Cost: 6 Cost: 4 Cost: 10
Delay: 60 ms Delay: 80 ms
. Jitter: 26 ms Jitter: 18 ms
Cost: 2 Cost: 9
Delay: 130 ms
Jitter: 40 ms
Cost: 7

Fig. 3. A finite number of classes are available at each AS.

antees (or even better) at the lowest cost. In our example, the

optimal combination includes the fourth service level of AS;,

the second of ASg, and the second of ASg3, as will be formally
demonstrated in Section IV-C. Such a combination provides an
end-to-end delay of 99 ms and a total jitter of 56 ms at a cost of

19.

This trivial example differs from a real-world scenario for at
least two reasons.

o Ittakes into account only the delay and jitter constraints. Ac-
tually, all of the requirements imposed by an SLS have to be
considered;

e we herein assumed that a finite number of service levels can
be available at each AS, i.e., the offered guarantees cannot
continuously vary but the allowed configurations are dis-
cretely distributed.

The former simplification will be removed in the following, as
we will present an algorithm which considers m > 1 con-
straints. The latter seems quite realistic and will not be aban-
doned. In fact, in the case of DiffServ environments, the only
degree of freedom is represented by the assignment of a flow
to a finite number of DiffServ classes (i.e., PHBs). In MPLS,
routing is a further degree of freedom, but the routes, albeit nu-
merous, are still finite. In the following we will refer to the
available service levels as classes.

In the light of the above considerations, the presented prob-
lem can be seen as a multi-dimensional non-linear optimization
problem. The multi-dimensionality is due to the existence of
several parameters to be simultaneously distributed (delay, jitter,
packet-loss, throughput) and the non-linearity can be ascribed to
the cost trend with respect to the reserved resources. Such a be-
havior is arbitrarily defined by each network provider according
to its own policies.

B. Problem Formulation

This section is devoted to formally define the SLS split-
ting problem. We assume each service class be specified by
m QoS measures (e.g., delay, packet loss, etc.). The overall
requirements imposed by the SLS are represented by the m-

110

ASi |

AS: | AS;

CLowisE]
WS

Tutb=158)
feL=10

% w(ll) [8,"] 3
D=0 5. 5

T w(h2y=[10,10;
. e12)=8

.;rw'(s'ai‘[én‘,sl \
e =10

,,wf(z,n,{lap,zm =

w(23) [5030)
N

. W(i.4); 160,26]
H14)=2

Fig. 4. The graphical problem representation in the 3-domains scenario.
The bold arrows identify a particular problem solution.

dimensional constraint vector @ = [Q1, -, Qm]- We distin-
guish among three classes of QoS measures: Bottleneck, ad-
ditive, and multiplicative. Bottleneck QoS measures are such
that their value over multiple ASs is the minimum (maximum)
among the values in every single AS. The most commonly used
bottleneck QoS measure is the throughput. Additive (multiplica-
tive) measures are such that their value over multiple ASs is the
sum (product) of the values in every single AS. Hop count, de-
lay and jitter are typical additive QoS measures, while 1 minus
the probability of packet loss is a multiplicative measure. Bot-
tleneck measures can be easily dealt with by discarding the ser-
vice classes offering a smaller (larger) value than the minimum
(maximum) required. Multiplicative measures can be converted
into additive ones by taking the logarithm. Therefore, without
loss of generality, we only consider additive measures.
Definition IV.1 (SLS splitting problem): Let us denote by K
the number of domains to be crossed, N; the (finite) available
number of classes inside the i-th AS, w(i,j) the vector of the
m additive QoS measures values guaranteed at a non- -negative
cost ¢(4, §) by the j-th class inside AS; and Q the vector of QoS
constraints. The SLS splitting problem is to find, if any, a K-

tuple (41,72, ", 9Kx), Jo = 1,---, N;, Vi =1,---, K such that
. K .

(1) Zwl(z7ji)§Ql7 vz:1a7m

Ly =t , 1))

(11) (.717"').7]() E y)

a'rgmln(j{,--~,j;<)satisfying(i) C(]l’ o ’]}()

where C(j1, - jx) = Soie, ¢4, J;) is the overall cost of the
K_tuple (.7177.71() .

A K-tuple (51, -+, jk) is said to be feasible if it satisfies (i).
The SLS splitting problem is therefore to find a feasible K-tuple
having the smallest cost. The following subsection gives a for-
mulation of the algorithm we propose to solve the problem de-
fined above.

C. Solution Algorithm

As for every combinatorial problem, the simplest solution
relies on an exhaustive search extended to the entire solution
space. An iterative algorithm performing K steps can serve
this purpose. The i-th step combines the (¢ — 1)-tuples with
the classes of AS; to produce the candidate i-tuples. Step K re-
turns all the possible solutions. A graphical representation of the

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. 1, MARCH 2006

problem may help make the way such algorithm works clearer.
Fig. 4, e.g., depicts our 3-domains sample scenario. The nodes
represent the available classes and the edges connect two nodes
belonging to neighboring ASs. Nodes belonging to the same AS
are not connected, as well as nodes belonging to non-adjacent
ASs. A candidate solution is thus represented by a path con-
necting in some way a class inside the first AS to a class inside
the last AS.

Unfortunately, the number of solutions to be evaluated grows
exponentially with the number of ASs (X). Complexity can be
reduced by exploring a subset of all the possible paths, provided
that the optimal solution is still returned. The approach we pro-
pose achieves an efficient search space reduction while returning
the optimal solution. The basic idea is to early discard not only
the unfeasible 7-tuples but also the dominated ones.

Definition IV.2 (dominated I-tuples): An I-tuple (5%, - - -, j%).

I € {1,---,K}, is said to be dominated by an I-tuple
(4%, -+, 7¢) if and only if
I ij
Z i .71 < Zwl(z’]f)) \ﬂ:L;m (2)
=1 i=1
C(J% - J1) < O (3)
where C'(j1,- -+, j7) = Zfil (i, 7;) is the cost of the I-tuple
(G- dr)-

In other words, if two I-tuples (5§, ---,§%) and (5, -, j9) are

found at step I such that the former provides better QoS values

at a lower cost than the latter, then we discard (52, - - -, j%). We

now prove that such operation does not affect the optimality of

the solution returned. Two events must not occur:

(e1) The dominated I-tuple leads to a feasible K-tuple and the
dominant [-tuple does not lead to any feasible K-tuple.

(e2) The dominated I-tuple leads to a feasible K-tuple with a
smaller length than that of the K-tuple the dominant I-
tuple leads to.

Let us denote by (57, "

;b b
(]1""771’.714—17"

ties (2), it yields
I
> wili, i)+ Y wigi) <
i=1 i=I4+1

I
=1

ie, (3¢, 4%, 3141, - - - Ji) is afeasible K-tuple. Thus, event
(e1) cannot occur. Analogously, it can be shown, using (3), that
event (eo) cannot occur, concluding the proof that our algorithm
returns an optimal solution. Finally, we remark that no particular
hypothesis needs to be made on the nature of the discrete cost
function ¢(i, 7).

+j%) a (K — I)-tuple such that
-, J) is a feasible K-tuple. Using inequali-

K

K

Z wl(lyjz,) S Ql7 vl = 17"'am

i=I+1

D. Algorithm Pseudo-Code

The pseudo-code of the algorithm we propose to solve the
SLS splitting problem (Definition IV.1) is shown in Fig. 5. The
inputs to our algorithm are the number of ASs (K), the con-
straints on the additive QoS measures (Q) and the QoS values

AVALLONE et al.: RESOURCE ALLOCATION IN MULTI-DOMAIN NETWORKS BASED... 11}

SLS-SPLITTING(K, §, offer)
c[n] — 0
@n] — 0
LIST-INSERT(S[0],)
fori — 1to K
do if S[i — 1] is empty
then return NIL
for each u € S[i — 1]
do for each z € offer(i]
do W] — W[z] + Wyl
clv] « clz] + c[u]
id;[v] «— id[z]
12 if Is-FEASIBLE(v, @) and
Is-NOT-DOMINATED(v, S|i])
13 then LI1ST-INSERT(S]7], v)
14 DOMINANCE-CHECK (v, S|i])
15 return LisT-MINIMUM-COST(S[K])

——
— OOV~ -

Fig. 5. Pseudo-code SLS-SPLITTING.

IS-FEASIBLE(v, §)

1 fori—1ltom

2 do if w; [v] > Q;

3 then return FALSE
4 return TRUE

Fig. 6. Pseudo-code IS-FEASIBLE.

Is-NOT-DOMINATED(v, S)

1 foreachu € S

2 do min « wilv] — wi fu]

3 fori — 2tom

4 do if w;[v] — w;[u] < min

5 then min — w;[v] — w;[u]
6 if min > 0 and c[v] > c[u]

7 then return FALSE
8 return TRUE

Fig. 7. Pseudo-code Is-NOT-DOMINATED

associated with the service classes of all the ASs, represented as
an array offer of K lists. The j-th element of list offer[i] is an
object representing the j-th service class of AS;. Such objects
have a cost field ¢, a vector field @ containing QoS values and an
integer identifier field ¢d. As far as objects, we adopt the follow-
ing pseudo-code convention (borrowed from [7]): A particular
field is accessed using the field name followed by the name of
its object in square brackets. For instance, if z denotes the j-th
service class of AS; then c{z] represents c(i, j) and w(z] rep-
resents w(i, 7). Each I-tuple (j1-- -, jr) determined at the I-th
step (I = 1,---, K) is represented by an object, say it v, stored
in list S{I]. Such object has a cost field ¢ (c[v] = C(j1- -, j1)),
a vector field & (Wv] = Zle (%, j;)) containing the cumu-
lative QoS values and a vector field id whose components are
the indices of the I-tuple. Finally, we assume the existence of
a constant m indicating the number of QoS measures, whose
scope includes all the subroutines.

The procedure SLS-SPLITTING returns NIL if no feasible K-
tuple exists and an optimal solution otherwise. Lines 1-3 ini-
tialize S[0] to the list containing just a null element. Then, for
every stepi = 1, -- -, K the list S[¢ — 1] associated with the pre-
vious step is examined. If such list is empty, it means that no

DOMINANCE-CHECK (v, S)

1 foreachu € S — {v}

2 do maz — wy[v] — w1 |u]

3 fori < 2tom

4 do if w;[v] — w;u] > maz

5 then maz — w;[v] — w;[u]
6 if maz < 0and c[v] < cfu]

7 then L1ST-DELETE(S, u)

Fig. 8. Pseudo-code DOMINANCE-CHECK

feasible solution exists and the procedure returns NIL (line 6).
Otherwise, each (¢ — 1)-tuple of S{i — 1] is combined with the
classes in the i-th AS to produce the candidate ¢-tuples (lines
7-11). Not all such elements are inserted in S[¢]. For every new
i-tuple, the subroutine I1s-FEASIBLE (Fig. 6) checks whether it
obeys the constraint vector Q Then, the subroutine IS-NOT-
DoOMINATED (Fig. 7) compares the new i-tuple with those al-
ready inserted in S[i]. If a dominant :-tuple is found in S{],
the subroutine returns FALSE (lines 6-7) and the new ¢-tuple is
discarded. Otherwise, the new 4-tuple is inserted in Sz} (line 13
of SLS-SPLITTING) and the procedure DOMINANCE-CHECK
(Fig. 8) is invoked. The purpose of such procedure is to re-
move possible dominated i-tuples from S[¢]. If the new i-tuple
is found to dominate an element in S[¢], this last element is re-
moved from S[i] (lines 6-7). Thus, at any time S{é] contains
i-tuples that do not dominate each other. After step K, the list
S[K] contains the set of candidate solutions. The subroutine
L1ST-MINIMUM-COST returns NIL if the list is empty and the
object associated with the K -tuple having the lowest cost other-
wise. The returned K-tuple, if any, is an optimal solution to the
SLS splitting problem.

E. Complexity Analysis

This section is to evaluate the worst-case complexity of SLS-
SPLITTING. The initialization (lines 1-3) takes O(1) time. In
the worst-case, the outer for loop performs K iterations. The
for loop of line 7 iterates over the element in S[i — 1]. We
denote by nyay the maximum number of elements simultane-
ously stored in a list at any time. Thus, the for loop of line
7 performs O(nmay) iterations. The for loop of line 8 is re-
peated at most Nyax times, where Ny, = maX;e(1,.. K} N;.
The assignments of lines 9 to 11 takes O(1) time (if we con-
sider the number of QoS constraints as a constant), so as the
subroutines IS-FEASIBLE and LIST-INSERT do. We have to
compute the worst-case running time of IS-NOT-DOMINATED.
The for loop performs O (7,) iterations, each of which takes
O(1) time. Hence, the complexity of IS-NOT-DOMINATED
is O(nmax). Analogously, the complexity of DOMINANCE-
CHECK i8 O(nmax). Consequently, the running time of the outer
for loop in SLS-SPLITTING is O(KnZ, Numax). The running
time of LIST-MINIMUM-COST is O(7max), as it performs a lin-
ear search on a list of at most nn,.x elements. Hence, the worst-
case running time of SLS-SPLITTING is O(Kn2,, Nyayx)-

An upper bound to ny.x 18 Hfil N;, of course. But, if
QoS values and constraints are integers, we can attain a stricter
upper bound. For convenience, we introduce a constraint on
the cost of the candidate solutions. Let the sum of the costs

112

of the most expensive class at each AS be the cost constraint
Qo = Zfil max;eqy,...,n;} ¢4, j). Clearly, the cost of every
candidate solution must be less than or equal to Q)y. Also, con-
sider the augmented constraint vector Q' = [Qo Q] Since an
i-tuple that does not obey such constraints is discarded, there can
be at most [];-, @} distinct objects in list S[i],Vi = 1,---,m,
corresponding to all the possible combinations of QoS values
and cost. We want to determine the size of a largest subset of el-
ements that do not dominate each other. Two objects u and v do
not dominate each other if, for at least two different components
0 < a # b < m holds that w) [u] < w}[v] and wy[u] > w,|v],
where ' is the augmented vector field [¢c w]. It means that,
for any couple of non-dominated objects w and v, at least two
components of the (m + 1)-dimensional vector ' [u] must be
different from '[v]. We now prove by construction that the
maximum size Spax of a largest subset of elements that do not
dominate each other is

e
1=0

—.
max Q'
ogingl

Smax = (4)

Without loss of generality, we assume for convenience that
the components of @’ are ordered in non-increasing order, i.e.,
Qy > Q) = -+ > Q... Hence, (4) is equivalent to

m
Smax = | [@5)

i=1
We start by considering the case m = 1. Since two elements
u and v do not dominate each other if wjlu] < wjlv] and
wi[u] > wi[v] or viceversa, we can build a largest subset of
non-dominated objects starting from the element [Q;, 1] and
adding new elements by decreasing the first component and in-
creasing the other. A largest subset is therefore

[Qo — @

(6)

/
— 0 — 1.
1 ¢ :|a q1 07 s 1

The number of elements in such subset is Q}. Analogously,
when considering the case m = 2, we build a largest sub-
set starting from the subset [Q), —q¢1 14+¢ 1], 1 =
0, -+, Q] — 1, and adding new elements by decreasing the first
component (associated with the largest constraint) and increas-
ing the last one. A largest subset is therefore

/_ —
Qolflq1 a2 g=0,--,0Q7 -1)
T

Thus, for a given value of ¢y, different values of ¢, give rise to
objects that do not dominate each other. The maximum size of
such largest subset is 2} Q5. The maximum size can be achieved
when Q — (@) — 1) — (@4 — 1) > 1. Iterating this procedure
m times, we obtain a largest subset of (m + 1)-sized elements
that do not dominate each other

Q{)_Z?;lqi q1=07"'7Q/1_1
1+a¢1 g2=0,--,Q5—1
: , : ®)

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. 1, MARCH 2006

S] Sz S}

4] v pefe » | < id v 1ol ey | coss | 2
m [68 (o] [an]aze [20]|awn|asen |35 T

@ [aoa0] 8 | a2] 6529 15| a12| @229 [32| F2
@ (6017 5 | [aztessd+ | [013] 6327 [30 | 2=
@ 6028 2| [an | a821) | 18 | [@a L@sany fae | 322 | 694D | 2
22 [@30 | 13| [62m Fwosey [0 | |02 | 10045 | 20
2 o | | (122) | (@assy | 27| [P 4651
eeean s | (a2 | 7536 | 25 | [R5 24
G2] 60,37 | 10 | [ersaelee| [[G22 | #8957 | 21
(33) | (80,47 | 9 | |&hDT329133 333142655119
4168391+ | | (2.1, | 2731 | 30 B354 (+66:65 18
@2)| 9046y | 7 11213 (58,29) | 28 th25 19550122
6 | | &H 19839127 4.(42.2) | (99.56) | 19
2;2, D1 45387 8 23313654917
222 | @940) |25 PRSI IPFERPIN

ChZ 17

Fig. 9. The algorithm evolution in the scenario depicted in Fig. 3.

The maximum size of such largest subset is [\, @}, which can
be attained if Q) > 1+ 3.~ (Q; — 1).

Consequently, 7, = min {Hfil N;, E%} In
case of finite granularity of the constraints the second bound
applies and the asymptotic complexity can be expressed as
O (K (Hzl QZQ) Nm.dx), i.e., our algorithm exhibits a pseudo-
polinomial complexity.

F. Numerical Example

With reference to our 3-domains sample scenario illustrated
in Fig. 3, lists S[1], S[2], and S[3] are reported in Fig. 9 as
a result of the execution of SLS-SPLITTING. S[1] simply in-
cludes the classes available in ASy. S[2] is obtained by com-
bining every element in S[1] with each class in AS, (all of
the classes in AS» satisfy the overall SLS constraints). We note
that some combinations can be early discarded. More precisely,
the elements stricken through with a continuous line have been
discarded as soon as they were computed (procedure 1S-NOT-
DOMINATED found a dominant object already present in the
list), while those stricken through with a dashed line have been
discarded at a later time by procedure DOMINANCE-CHECK due
to a newly inserted dominant object. For instance, element (4, 1)
is dominated by (3, 2) and element (1, 3) is dominated by (2, 2).
S[3] is obtained by combining the surviving elements in S[2]
with all of the classes in AS[3]. For the sake of conciseness,
the combinations stemming from class 5, which does not sat-
isfy by itself the overall constraints, are not listed. Dominated
objects are not included in S[3], again, by means of IS-NOT-
DOMINATED and DOMINANCE-CHECK. Among the remaining
elements, the solution is found by picking the one having the
lowest cost, i.e., the K-tuple (4,2, 2).

V. IMPLEMENTATION ISSUES

The algorithm we devised has been conceived at the outset as
a distributed solution to the QoS partition problem. Notwith-
standing, a centralized approach might also be employed for
implementation. Such approach implies that all the informa-
tion related both to classes and associated costs is available at
the computing node (i.e., any of the RMs along the chain, or

AVALLONE et al.: RESOURCE ALLOCATION IN MULTI-DOMAIN NETWORKS BASED... 113

offersn-1

m

» /'

selected offer among
those in offersn-1

RMn

offersny

/stm' ________
)

/Mu_w-

selected offer among
those in offerss

Fig. 10. The role of the intermediate RM,, along the path in the distributed approach.

even a dedicated entity). An ad-hoc protocol is needed in order
to collect data that have to be processed by the path-partitioning
algorithm. Also in this case, COPS seems to be a good candidate
to support the transport of the data units associated with such an
ad-hoc solution. This is due to COPS capability to transparently
hold communication between information containers (i.e., RMs
acting as PEPs) and a centralized information manager (i.e., the
computing node acting as PDP).

Coming back to the distributed approach, in this case each
RM along the path is responsible for carrying out all the oper-
ations pertaining to one single stage. The cascade model best
describes this case. As illustrated in Fig. 10, the n-th resource
mediator along the chain (RM,,) receives from RM,, ; the set
of cumulative offers that match the constraints up to stage n — 1.
It merges its own offers with the ones in the received set and
delivers the updated set of offers to RMnH.2 Afterwards, RM,,
enters a waiting state, looking for an answer flowing along the
backward direction (i.e., coming from RM,,1). The received
answer (step j in the picture) carries information about the cu-
mulative class of service that has been chosen for the n-th stage
by the dynamic path partitioning algorithm. This cumulative
class belongs to the set of fers,, obtained by RM,, after merg-
ing the offers from RM,,_; (offers,_1) with its own. The
cumulative class of service informs RM,, about both the local
class that has to be configured inside the n-th domain and the
cumulative class of service that has to be notified to RM,,_1.

Locality of information (i.e., information scope limited to a
single hop) is a key point of our appréach. With this algorithm
no global knowledge about the different classes of service avail-
able at the various hops along the value-chain is required.

VI. RELATED WORK

Our work has many liaisons with previous research. Interdo-
main SLS-based network management, on one side, has been
the subject of a number of interesting research studies in the last
few years. The SLS specification itself has been one of the ma-
Jjor outcomes of the Tequila European research project [8]. With
respect to the specific issues related to the interdomain manage-
ment of SLS-based networks, an effective architecture has been

2RM,,+1 recursively performs the same operations, by interacting with
RM,, 42 (not shown in the picture).

designed in the framework of the Mescal project, which actu-
ally represents the continuation of the work carried out within
Tequila. Mescal [9] proposes to tackle the interdomain issue
by implementing an architecture which leverages the concept
of provider-based SLS (pSLS). A pSLS is used to carry infor-
mation about local QoS classes between each pair of peering
domains along the service delivery chain. As the pSLS crosses
the involved domains, local QoS classes are transformed into
so-called extended QoS classes. An extended QoS class in-
deed represents the level of QoS available at a specific domain
falling along the delivery chain. It thus brings memory of the
QoS experienced by the interdomain flow while crossing the
previous domains. From the architectural standpoint, our ap-
proach is compliant with the Mescal solution, which seems to be
general enough to cope with the signaling phase needed in or-
der to enable information exchanging among different domains.
Notwithstanding, Mescal does not focus on the specific algo-
rithm to be employed in order to solve the QoS partition prob-
lem.

With respect to this last point, we remark that the SLS split-
ting problem we consider highly resembles the QoS partition
problem studied by Lorenz and Orda in [4]. Such problem is to
partition the QoS requirements of an application along a selected
path in such a way to minimize the cost. The similarity holds
if each node of the path is viewed as an autonomous system.
Lorenz and Orda proposed in [4] a solution to the QoS partition
problem assuming the link cost be a continuous convex function
of the delay. This last point clearly marks the difference between
our approach and that of Lorenz and Orda. In fact, with our so-
lution no particular assumption holds concerning the nature of
the cost function considered.

Starting from the consideration that QoS architectures like
DiftServ provide for finitely many service classes, Raz and
Shavitt [3] studied the case of discrete cost functions. They
proposed a polynomial dynamic programming algorithm for the
general case and then investigated some particular instances.
The QoS partition problem with discrete cost functions is equiv-
alent to the SLS splitting problem. Our algorithm is an improve-
ment over the dynamic programming one proposed in [3] mainly
because the former supports multiple QoS measures while the
latter is restricted to just one measure. Interestingly enough,
as shown in Section IV-E, the asymptotic complexity of our al-
gorithm linearly depends on the number of domains and grows

114

with the square of the QoS constraints, thus showing exactly the
same asymptotic behavior of the algorithm proposed by Raz and
Shavitt.

VII. CONCLUSIONS

In this paper we presented an architecture for effective man-
agement of SLS-based networks. When designing our frame-
work we took into account the following guidelines: Clear
identification of roles and definition of responsibilities. Such
guidelines suggested us to embrace a component based ap-
proach which brought us to the introduction of a three layer-
architecture. Each layer perceives the concept of a service at
a different level of abstraction and interacts with the neighbor-
ing layers by means of lean interfaces. We also showed how
the uppermost layers can effectively interact in order to achieve
end-to-end service assurance across multiple domains in an or-
chestrated fashion. With respect to this last point, we illustrated
in some more depth an algorithmic approach to the SLS split-
ting issue. The algorithm we propose brings in a novel con-
tribution since it computes an optimal solution to the partition
problem also in the case where multiple QoS constraints have
to be jointly satisfied. Moreover, this objective is achieved at
an affordable computational complexity. Last but not least, the
algorithm naturally lends itself to actual deployment in the cur-
rent Internet scenario. On one hand, it is naturally prone to a
distributed implementation. On the other hand, it fully complies
with the current trend which sees service providers’ reluctance
to disclose information about both their inner structure and their
business and management policies. With our approach, the only
information that is propagated towards the other entities is the
cost associated with the delivery of a service with specified guar-
antees.

ACKNOWLEDGMENTS

Research outlined in this paper has been partially supported
by the European Union under the E-Next project FP6-506869
and by the Italian Ministry for Education, University and Re-
search (MIUR) in the framework of the WEB-MINDS (wide-
scale, broadband, middleware for network distributed services)
project (FIRB program) and the QUASAR project (PRIN pro-
gram).

REFERENCES

{11 P. Cremonese, G. Cortese, A. Diaconescu, S. D’Antonio, M. Esposito,
R. Fiutem, and S. P. Romano, “Cadenus: Creation and deployment of end-
user services in premium IP networks,” IEEE Commun. Mag., Jan. 2003.

[2] D. Goderis, M. Buchli, Y. T’joens, C. Jacquenet, G. Memenios, G. Pavlou,
R. Egan, D. Griffin, P. Georgatsos, L. Georgiadis, and P. V. Heuven, “Ser-
vice level specification semantics and parameters,” draft-tequila-sls-02.txt,
Internet Draft, Jan. 2002, expires Aug. 2002.

{31 D. Raz and Y. Shavitt, “Optimal partition of QoS requirements with dis-
crete cost functions,” IEEE J. Select. Areas Commun., vol. 18, no. 12,
pp- 2593-2602, Dec. 2000.

[4] D. H. Lorenz and A. Orda, “Optimal partition of QoS requirements on
unicast paths and multicast trees,” in Proc. INFOCOM’99, Mar. 1999,
pp. 246-253.

{51 1. Boyle, R. Cohen, D. Durham, S. Herzog, R. Rajan, and A. Sastry, “The
COPS (common ppen policy service) protocol,” RFC2748, Jan. 2000.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. 1, MARCH 2006

[6] S. D’Antonio, M. Esposito, S. P. Romano, and G. Ventre, “Time aware
admission control on top of time unaware network infrastructures,” Com-
puter Commun., vol. 28, no. 4, pp. 405-416, 2005.

[71 T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 2nd ed., McGraw-Hill, 2001.

[8] E. Mykoniati, C. Charalampous, P. Georgatsos, T. Damilatis, D. Goderis,
P. Trimintzios, G. Pavlou, and D. Griffin, “Admission control for providing
QoS in IP DiffServ networks: The TEQUILA approach,” IEEE Commun.
Mag., vol. 41, no. 1, pp. 38—44, Jan. 2003

[9] P. Levis, H. Asgari, and P. Trimintzios, “Consideration on inter-domain
QoS and traffic engineering issues through a utopian approach,” in Proc.
SAPIR 2004 workshop of ICT 2004, Aug. 2004.

Stefano Avallone received the M.S. degree in
Telecommunications Engineering (2001) and the
Ph.D. degree in Computer Networks (2005) from the
University of Napoli “Federico I1.” His research inter-
ests include computer and communication networks,
traffic engineering, QoS routing, and wireless mesh
networks. He was a visiting researcher at the Delft
University of Technology (2003-2004) and at the
Georgia Institute of Technology (2005). In 2004, he
was awarded a research funding from the European
Doctoral School of Advanced Topics in Networking
(SATIN), the instrument employed by E-NEXT (an EU FP6 Network of Excel-
lence) to invest in education of researchers for the European Research Area.

Salvatore D’Antonio received the M.S. degree in
computer engineering from the University of Napoli
“Federico I1.” He is currently a researcher at C.LN.L,
the Italian University Consortium for Computer Sci-
ence. His current research interests include network
monitoring and control, quality of service (QoS) pro-
visioning over IP networks, and e-business platforms.
He is currently involved in a number of international
research projects in the area of inter-domain QoS
monitoring and delivery.

Marcello Esposito received the degree in Telecom-
munications Engineering from the University of
Napoli “Federico II” in 2000. He is currently work-
ing as a researcher at C.IN.I,, the Italian University
Consortium for computer science and he teaches com-
puter programming at the University of Napoli. His
research interests include QoS provisioning, interdo-
main network management, and content adaptation for
web services.

Simon Pietro Romano received the degree in Com-
puter Engineering from the University of Napoli “Fed-
erico II,” Italy, in 1998. He obtained a Ph.D. degree
in Computer Networks in 2001. He is currently an
assistant professor at the Computer Science Depart-
ment of the University of Napoli. His research in-
terests primarily fall in the field of networking, with
) special regard to quality of service (QoS) provision-
-, ing in heterogeneous environments, network security,
L j dynamic network management and web-based appli-
— cations (electronic market-places distance learnmg,
etc.). Heis currently involved in a number of research projects, whose main
scope is the design and implementation of effective solutions for the provision-
ing of services with quality assurance over Premium IP networks. Simon Pietro
Romano is member of both the IEEE Computer Society and the ACM.

AVALLONE et al.: RESOURCE ALLOCATION IN MULTI-DOMAIN NETWORKS BASED...

Giorgio Ventre is professor of Computer Networks
in the Department of Computer Engineering and Sys-
tems of the University of Napoli “Federico II” where
he is leader of the COMICS team. COMICS stands
for Computers for Interaction and Communications
and is a research initiative in the areas of networking
and multimedia communications. After started ITEM,
the first research laboratory of the Italian University
Consortium for Informatics (CINI), Giorgio Ventre is
now president and CEO of CRIAI, a research com-
pany active in the areas of Information Technologies.
As leader of the networking research group at University of Napoli Federico 11
Giorgio Ventre was principal investigator for a number of national and interna-
tional research projects. Currently, he is involved in the E-NEXT Network of
Excellence of the VI Framework Programme of the European Union where he
is leading the activities of the WG on Traffic Engineering and Monitoring. Gior-
gio Ventre has co-authored more than 150 publications and he is member of the
IEEE Computer Society and of the ACM.

115

