• 제목/요약/키워드: Distributed real-time control system

검색결과 297건 처리시간 0.027초

분산 실시간 제어 시스템을 위한 TTP 네트워크 시스템의 구현 (Implementation of TTP Network System for Distributed Real-time Control Systems)

  • 김만호;손병점;이경창;이석
    • 제어로봇시스템학회논문지
    • /
    • 제13권6호
    • /
    • pp.596-602
    • /
    • 2007
  • Recently, many ECUs(Electronic Control Units) have been used to enhance the vehicle safety, which leads to a distributed real-time control system. The distributed real-time control system requires to reduce the network delay for dependable real-time performance. There are two different paradigms by which a network protocol operates: event-triggered and time-triggered. This paper focuses on implementation of a time-triggered protocol. i.e. TTP/C(Time-Triggered Protocol/class C). This paper presents a design method of TTP control network and performance evaluation of distributed real-time control system using TTP protocol.

Real-time Message Network System for a Humanoid Robot

  • Ahn, Sang-Min;Gong, Jung-Sik;Lee, Bo-Hee;Kim, Jin-Geol;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2296-2300
    • /
    • 2005
  • This paper deals with the real-time message network system by a CAN (controller area network) based on the real-time distributed control scheme to integrate actuators and sensors in a humanoid robot. In order to apply the real-time distributed processing for a humanoid robot, each control unit should have the real-time efficient control method, fast sensing method, fast calculation and real-time valid data exchange method. Moreover, the data from sensors and encoders must be transmitted to the higher level of control units in maximum time limit. This paper describes the real-time message network system design and the performance of the system.

  • PDF

DEVELOPMENT OF TIMING ANALYSIS TOOL FOR DISTRIBUTED REAL-TIME CONTROL SYSTEM

  • Choi, J.B.;Shin, M.S.;M, Sun-Woo
    • International Journal of Automotive Technology
    • /
    • 제5권4호
    • /
    • pp.269-276
    • /
    • 2004
  • There has been considerable activity in recent years in developing timing analysis algorithms for distributed real-time control systems. However, it is difficult for control engineers to analyze the timing behavior of distributed real-time control systems because the algorithms was developed in a software engineer's position and the calculation of the algorithm is very complex. Therefore, there is a need to develop a timing analysis tool, which can handle the calculation complexity of the timing analysis algorithms in order to help control engineers easily analyze or develop the distributed real-time control systems. In this paper, an interactive timing analysis tool, called RAT (Response-time Analysis Tool), is introduced. RAT can perform the schedulability analysis for development of distributed real-time control systems. The schedulability analysis can verify whether all real-time tasks and messages in a system will be completed by their deadlines in the system design phase. Furthermore, from the viewpoint of end-to-end scheduling, RAT can perform the schedulability analysis for series of tasks and messages in a precedence relationship.

실시간 분산 열연 두께제어 시스템의 설계 및 현장적용 (A Real-time Distributed AGC System for a Hot Strip Mill)

  • 이호훈
    • 대한기계학회논문집A
    • /
    • 제23권6호
    • /
    • pp.922-930
    • /
    • 1999
  • This paper describes a new 14-CPU real-time distributed automatic gauge control (AGC) system for POSCO's No. 2 Hot Strip Mill at Pohang Works. The new AGC system has adopted gaugemeter AGC, Monitor AGC, and roll gap disturbance compensators. The computer system for the new AGC system has been developed based on VMEbus computer systems and a commercial real-time operating system. A VMEbus computer system is also used for the position servo control of hydraulic cylinders. All the application programs and input/output signals have been reasonably distributed over the control computer systems for the maximum reliability and effectiveness of the system. The new AGC system has been successfully used for the No. 2 Hot Strip Mill.

실시간 시스템인 승강기 제어기 프로그램 개발 (Programing development environment for the elevator controller of real-time systems)

  • 최병욱;임계영;고경철
    • 제어로봇시스템학회논문지
    • /
    • 제5권5호
    • /
    • pp.622-629
    • /
    • 1999
  • This paper discusses a real time multi-tasking system model and a development environment for an elevator control system. Recently, as the elevator systems become large-scaled and operate with high speed, there are lots of software tasks to be processed with time constraints. Thus, the control systems are designed with distributed control structure and characteristics of typical real time systems. For stuructural design of such real time system, we introduce a multi-tasking model based on a real time operating system model and an software development environment based on virtual protopyping which simulates real system operation in the cross development of a new elevator system with distributed control structure and its system reliability can be verified through numerous field tests.

  • PDF

마이크로 커널을 이용한 2축 반송 테이블의 분산제어 (Distributed Control of a Two Axis Convey Table Using Real-time Micro-Kernel)

  • 이건영
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권3호
    • /
    • pp.182-187
    • /
    • 2004
  • In this paper, we propose a PC based distributed controller for a two axis convey table using real-time micro-kernel. PC, Windows program, gives an easy way to implement wealthy GUI and micro-kernel, ${\mu}$C/OS-II, provides a real-time capability to control devices. We built a real-time distributed control system using ${\mu}$C/OS-II kernel which needs to process the tasks for two motors within the desired time to synchronize the motion. We used both semaphore and message mail box for synchronization. Unlike the previous study where we used step motors for the actuator of two axes convey table, we rebuilt the convey table with DC motors and the dedicated position servo which had built in out lab, and then we implemented a realtime distributed control system by putting the micro-kernel into between PC and position servo. Moreover we developed the PC based graphic user interfaces for generating planar drawing image control. Experimental results also presented to show the Proposed control system is useful.

분산제어를 위한 필드제어시스템의 실시간 데이터 연계 (a Study on the Real-time Data Linkage of Field Control System for Distributed Control)

  • 김석곤;송성일;오응세;이성우;곽귀일;이은웅;박태림
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.777-779
    • /
    • 2003
  • This paper describes the real-time data linkage of the field control system for distributed control in nuclear power plant environment. The most important keys of digital control system in nuclear power plant are the reliability and stability of system, and real-time control ability. This Paper brought up the hardware construction using a new method about the design of each station located upon control transmission network to improve real-time ability of field control system, and measured the station binding time between devices connected to field control module. And it was confirmed performance improvement of overall system for real-time data linkage between control devices.

  • PDF

원자력 발전소 분산 제어 시스템을 위한 네트워크의 실시간 특성 해석 (Real-Time Characteristic Analysis of a DCS Communication Network for Nuclear Power Plants)

  • 이성우;임한석
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권5호
    • /
    • pp.650-657
    • /
    • 1999
  • In this paper, a real-time communication method using a PICNET-NP(Plant Instrumentation and Control Network for Nuclear Power plant) is proposed with an analysis of the control network requirements of DCS(Distributed Control System) in unclear power plants. The method satisfies deadline in case of worst data traffics by considering aperiodic and periodic real-time data and others.

  • PDF

발전설비 분산제어 시스템에서 CAN 구축기술 연구 (A Study on the Implementation of CAN in the Distributed System of Power Plant)

  • 김욱헌;홍승호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권6호
    • /
    • pp.760-772
    • /
    • 1999
  • The CAN is a serial communication protocol for distributed real-time control and automation systems. Data generated from field devices in the distributed control of power plant are classified into three categories: real-time event data, real-time control data, non-real-time data. These data share a CAN medium. If the traffic of the CAN protocol is not efficiently controlled, performance requirements of the power plant system could not be satisfied. This paper proposes a bandwidth allocation algorithm that can be applicable to the CAN protocol. The bandwidth allocation algorithm not only satisfies the performance requirements of the real-time systems in the power plant but also fully utilizes the bandwidth of CAN. The bandwidth allocation algorithm introduced in this paper is validated using the integrated discrete-event/continuous-time simulation model which comprises the CAN network and distributed control system of power plant.

  • PDF

DEVS형식론을 적응한 HLA기반의 분산 실시간 시뮬레이션 시스템 개발 (Development of the Distributed Real-time Simulation System Based on HLA and DEVS)

  • 김호정;이재현;조길석
    • 한국군사과학기술학회지
    • /
    • 제9권3호
    • /
    • pp.25-32
    • /
    • 2006
  • Weapon systems composed of several subsystems execute various engagement missions in distributed combat environments in cooperation with a large number of subordinate/adjacent weapon systems as well as higher echelons through tactical data links. Such distributed weapon systems require distributed real-time simulation test beds to integrate and test their operational software, analyze their performance and effects of cooperated engagement, and validate their requirement specifications. These demands present significant challenges in terms of real-time constraints, time synchronization, complexity and development cost of an engagement simulation test bed, thus necessitate the use of high-performance distributed real-time simulation architectures, and modeling and simulation techniques. In this paper, in order to meet these demands, we presented a distributed real-time simulation system based on High Level Architecture(HLA) and Discrete Event System Specification(DEVS). We validated its performance by using it as a test bed for developing the Engagement Control System(ECS) of a surface-to-air missile system. The proposed technique can be employed to design a prototype or model of engagement-level distributed real-time simulation systems.