• Title/Summary/Keyword: Distributed power generation

Search Result 587, Processing Time 0.023 seconds

Power Flow Algorithm for Weakly Meshed Distribution Network with Distributed Generation Based on Loop-analysis in Different Load Models

  • Su, Hongsheng;Zhang, Zezhong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.608-619
    • /
    • 2018
  • As distributed generation (DG) is connected to grid, there is new node-type occurring in distribution network. An efficient algorithm is proposed in this paper to calculate power flow for weakly meshed distribution network with DGs in different load models. The algorithm respectively establishes mathematical models focusing on the wind power, photovoltaic cell, fuel cell, and gas turbine, wherein the different DGs are respectively equivalent to PQ, PI, PQ (V) and PV node-type. When dealing with PV node, the algorithm adopts reactive power compensation device to correct power, and the reactive power allocation principle is proposed to determine reactive power initial value to improve convergence of the algorithm. In addition, when dealing with the weakly meshed network, the proposed algorithm, which builds path matrix based on loop-analysis and establishes incident matrix of node voltage and injection current, possesses good convergence and strong ability to process the loops. The simulation results in IEEE33 and PG&G69 node distribution networks show that with increase of the number of loops, the algorithm's iteration times will decrease, and its convergence performance is stronger. Clearly, it can be effectively used to solve the problem of power flow calculation for weakly meshed distribution network containing different DGs.

Simulation Studies on Monitoring System for Interconnection of Distibuted Generation to Power Grid (분산전원 계통 연계 상황 모니터링을 위한 시뮬레이션 연구)

  • Oh, Sung-Nam;Han, Chul-Wan;Yoon, Ki-Don;Son, Young-Ik;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.96-98
    • /
    • 2005
  • This paper describes a monitoring system that monitors power quality and undesirable accidents when distributed generations are connected to the power grid. Prior to develop and operate a physical monitoring system, we constitute a simulation device to simulate the monitoring processes for the situations. The simulation system consists of the server and the client that connected by communication line. This system has various functions to monitor the power quality and the connection situation. Those functions are generation, transmission, acquisition and analysis of the simulated power data. This research seems very important to get the reliable and intelligent connection algorithm through the result of simulated monitoring system. Also hereafter, as this system uses the remote monitoring system through network and constitute the data base(DB), it will play an important role in building the automation of power system efficiently and systematically.

  • PDF

Control of an Open Winding Machine in a Grid-Connected Distributed Generation System (오픈 와인딩 머신을 이용한 계통 연계형 분산 발전 시스템의 제어)

  • Kwak, Mu-Shin;Sui, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.83-86
    • /
    • 2006
  • A grid-connected distributed generation system which consists of engine generator, dc link with multiple energy sources and inverter is proposed. All six of the stator leads of the generator, which is a surface mount permanent magnet machine, are brought out to the terminal of the generator. Three leads are connected to the inverter and the others are connected to the utility grid. In this proposed system the power from the engine-generator and the power from dc link can be controlled simultaneously by only one three-phase power converter. A control algorithm for the system is developed and verified by experiment results.

  • PDF

Black Start and Synchronization of Microgrid Considering Distributed Generation Control (분산전원의 제어 특성을 고려한 마이크로그리드의 블랙 스타트 및 계통 동기화 전략)

  • Choi, Jin-Young;Won, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.898-904
    • /
    • 2013
  • In order to minimize the damage from power outage, power system should be restored quickly. In this paper, a procedure for the restoration of microgrid is proposed. After elimination of the causes of power outage, a black start algorithm is executed by considering the characteristics of distributed generation control. After all resources have been recovered to the normal state, a grid reconnecting algorithm for stable operation in grid-connected mode is performed. In order to verify the proposed algorithm, low voltage microgrid is simulated using PSCAD/EMTDC.

Fault location identification and protective coordination schemes presentation of distribution system interconnected Distributed Generation (분산전원이 연계된 배전계통의 사고지점 확인 및 보호협조 방안 제시)

  • Choi, Dong-Man;Choi, Joon-Ho;Ro, Kyoung-Soo;Moon, Seung-Il;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.313-315
    • /
    • 2005
  • Recently There has been growing interest in new renewable energy systems with high-energy efficiency due to the increasing energy consumption and environmental pollution problems. But an insertion of new distributed generation to existng power distribution systems can cause several problems such as voltage variations, harmonics, protective coordination, increasing fault current etc, because of reverse power. This paper was applied to fault location defecting a method as each Relay sensing fault current value and carried out short-circuit analysis by MATLAB and PSCAD/EMTDC programs and identity the faulted section o f22.9[kV] distribution system interconnected a large number of distributed generation. The existing protection system of 22.9[kV] power distribution system analyzed and the study on protective coordination recloser and Sectionalzer accomplished

  • PDF

A Control and Protection Model for the Distributed Generation and Energy Storage Systems in Microgrids

  • Ballal, Makarand Sudhakar;Bhadane, Kishor V.;Moharil, Ravindra M.;Suryawanshi, Hiralal M.
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.748-759
    • /
    • 2016
  • The microgrid concept is a promising approach for injecting clean, renewable, and reliable electricity into power systems. It can operate in both the grid-connected and the islanding mode. This paper addresses the two main challenges associated with the operation of a microgrid i.e. control and protection. A control strategy for inverter based distributed generation (DG) and an energy storage system (ESS) are proposed to control both the voltage and frequency during islanding operation. The protection scheme is proposed to protect the lines, DG and ESS. Further, the control scheme and the protection scheme are coordinated to avoid nuisance tripping of the DG, ESS and loads. The feasibility of the proposed method is verified by simulation and experimental results.

A Study for Determining the Permissible Operating Range of Distributed Generation interconnected into Distribution System (배편계통에 도입되는 분산전원의 운전가능범위 결정에 관한 연구)

  • Kim, Tae-Eung;Kim, Jae-Eon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.2
    • /
    • pp.93-101
    • /
    • 2002
  • This paper describes a new method for determining the permissible operating range of DG(Distributed Generation) when DG is introduced into power distribution systems of which the voltage is controlled by LDC(Line Drop Compensator). Much of the DG installed during the next millennium will be accomplished through the reconstruction of the electric power industry. But in that case, it is difficult to properly maintain the terminal voltage of low voltage customers by using only LDC. This paper presents a method for determining the permissible operating range of DG for proper voltage regulation of power distribution systems with LDC. Proposed method has been applied to a 22.9 kV model and practical distribution systems, and its result is almost identical with the simulation result.

A Study for the Voltage Analysis Method of Distribution Systems with Distributed Generation (분산전원이 도입된 배전계통의 전압해석 방법에 관한 연구)

  • 김태응;김재언
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.2
    • /
    • pp.69-78
    • /
    • 2003
  • This paper presents a voltage analysis method of distribution systems interconnected with DG(Distributed Generation). Nowadays, small scale DG becomes to be introduced into power distribution systems. But in that case, it is difficult to properly maintain the terminal voltage of low voltage customers by using only ULTC(Under Load Tap Changer). This paper presents a voltage analysis method of distribution systems with DC for proper voltage regulation of power distribution systems with ULTC. In order to develop the voltage analysis method, distribution system modeling method and advanced loadflow method are proposed. Proposed method has been applied to a 22.9 kV practical power distribution systems.

A Novel Algorithm of Underground Cable Fault Location based on the analysis of Distributed Parameter Circuit (분포정수회로 해석 방법을 이용한 지중선로 고장점 추정 알고리즘)

  • Yang Xia;Lee Duck Su;Choi Myeon Song
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.412-414
    • /
    • 2004
  • In this paper, a novel algorithm of underground cable fault location based on the analysis of distributed parameter circuit is proposed. The proposed method makes voltage and current equations about core and sheath, and then establishes a function of the fault distance according to the analysis of fault conditions. Finally gets the solution of this function through Newton-Raphson iteration method. The effectiveness of proposed algorithm has been verified by Matlab program, and the cable parameters such as impedance and admittance are from EMTP simulation.

  • PDF

A Control Method of Distributed Generation System Which is Connected to Power Distribution System : Without LDC Operation (배전계통에서의 분산전원 도입운용 관리방법 : LDC 운전을 하지 않을 경우)

  • Jung, Won-Jae;Kim, Tae-Eung;Kim, Jae-Eon
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.231-233
    • /
    • 2001
  • Nowadays, small scale DGS(Distributed Generation System), as a wind power generation or photovoltaic generation, becomes to be introduced into the power distribution system. But in that case, it is difficult to properly maintain the terminal voltage of low voltage customers. So, it is necessary to determine the permissible operation limit of the introduced DGS for proper voltage in distribution system. In this paper computes permissible operation limit of DGS when the DGS is connected to power distribution system using fixed tap(without LDC operation). For this simulation, KEPCO distribution system is used.

  • PDF