• Title/Summary/Keyword: Distributed antenna systems

Search Result 50, Processing Time 0.027 seconds

Design of Directional Coupler for TX/RX Isolation in UHF Band RFID Application (UHF 대역 RFID를 위한 송수신 분리 방향성 결합기 설계)

  • Na, Won;Kim, Wan-Kyu;Yu, Jong-Won;Lee, Moon-Que
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.2
    • /
    • pp.43-49
    • /
    • 2008
  • In this paper, new directional couplers for T/R switch of UHF RFID applications are proposed to overcome TX-to-RX leakage problem. The proposed method can remove TX-to-RX leakage caused by both imperfect isolation characteristic of the conventional directional coupler and the mismatch of antenna impedance. Two directional couplers are implemented using distributed elements and lumped elements respectively for the verification. The varactor tuneable circuits for compensation of the antenna mismatch is also proposed. The measurement result shows excellent TX-to-RX leakage suppression, more than 45dB in 910MHz.

  • PDF

Wireless Access Network Virtualization Based on Distributed Antenna Systems (분산 안테나 시스템에 기반한 무선 액세스망 가상화)

  • Kim, Su Min;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2085-2094
    • /
    • 2012
  • In this paper, we propose a wireless access network virtualization algorithm based on a digital unit (DU)-radio unit (RU) separated network structure in a cellular network with multiple radio access technologies (RATs). The proposed wireless access network virtualization algorithm consists of a baseline access network virtualization, RAT virtualization, and access path migration algorithms. Final wireless access network virtualization is performed by sequentially performing these procedures. Through system-level simulations which assume 3GPP LTE and WiMAX systems, the performance of the proposed wireless access network virtualization is evaluated in terms of system throughput for two scenarios according to asymmetry of network traffic load. Numerical results show that our proposed wireless access network virtualization algorithm achieves significant system throughput gain even in asymmetric traffic load and user distribution situations.

Design and Implementation of Robustness Distributed RTLS in Dense Environment (밀집 환경에 적합한 신뢰성 있는 분산형 RTLS 시스템의 설계 및 구현)

  • Jang, Hyun-Sung;Choi, Hoon;Jung, Yeon-Su;Baek, Yun-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2B
    • /
    • pp.287-295
    • /
    • 2010
  • RTLS used to track the location of object or person in real time. However, if there are a lot of tags and readers, the conventional single RTLS server may fail to estimate location of tags. And if the server cannot receive the tags signal due to pass-loss or NLOS from more than three readers, the server fail to estimate location of tags. In this paper, we propose a special reader which embeds RTLS location engine for distributed RTLS. And by using multi-directional antenna, alleviating multi-path effect and allowing estimate tag's location only using two readers. We also implement the system, we can reduce server packet 16times and get the all results of location estimate in single second. We achieved the location error within 1m.

Statistical Characteristic Analysis of the Spatial Channel Model for Performance Evaluation of MIMO Systems (MIMO 송수신 시스템 성능 평가를 위한 공간 채널 모델의 통계적 특성 분석)

  • Shin, Junsik;Suh, Junyeub;Kang, Hosik;Sung, Wonjin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.8
    • /
    • pp.748-757
    • /
    • 2015
  • MIMO systems utilizing multiple antenna transmission and reception is one of the key technologies to enhance the capacity of 5G wireless communications. In order to obtain an appropriate performance evaluation of MIMO techniques, the usage of wireless channel model reflecting spatial channel characteristics is required, such as the 3-dimensional spatial channel model(3D SCM) proposed by 3GPP TR36.873 documentation. In this paper, we implement and verify the channel simulation environment based on 3D SCM, to present and compare the characteristics of UMi and UMa environments. We also apply MIMO transmission to the UMa scenario to investigate the channel correlation among antenna elements with different array distances and to identify the corresponding throughput changes. By evaluating the channel power correlations for randomly distributed users within the sector for different horizontal and vertical antenna distances, we present the statistical characteristics which determine the transmission performance under the SCM environment.

Performance Modeling of STTC-based Dual Virtual Cell System under the Overlay Convergent Networks of Cognitive Networking (중첩 융합 네트워크 환경을 고려한 STTC기반 이중 셀 시스템 분석 모델)

  • Choi, YuMi;Kim, Jeong-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.20-26
    • /
    • 2012
  • The newly introduced model of a STTC-based Distributed Wireless Communication System (DWCS) can provide the capability of joint control of the signals at multiple cells. This paper has considered the virtual cell systems: the Dual Virtual Cell (DVC), and also proposes DVC employment strategy based on DWCS network. The considered system constructs DVC by using antenna selection method. Also, for multi-user high-rate data transmission, the proposed system introduces multiple antenna technology to get a spatial and temporal diversity gain and exploits space-time trellis codes known as STTC to increase a spectral efficiency.

A Cooperative Signaling Structure using the ¾ - rate STBC in Wireless Networks with Rayleigh Fading Channels (레일레이 페이딩 채널의 무선 네트워크에서 ¾ STBC를 사용한 협력신호 구조에 관한 연구)

  • Khuong Ho Van;Kong Hyung-Yun;Choi Jeong-Ho
    • The KIPS Transactions:PartC
    • /
    • v.13C no.7 s.110
    • /
    • pp.865-872
    • /
    • 2006
  • Cooperative communications (CC) have received a great deal of attention recently as an efficient way to obtain the spatial diversity without physical arrays. Thus, space-time block codes (STBC) which are well-known for use in co-located multi-antenna systems can be still utilized for single-antenna users in a distributed fashion. In this paper, we propose a cooperative signaling structure using the $\frac{3}{4}$-rate STBC and derive closed-form BER expression which takes the effect of network geometry and transmit power constraint into account. A variety of simulated and numerical results demonstrated the cooperation considerably outperforms the direct transmission when partners are located in appropriate positions.

Development of High Voltage, High Efficiency DC-DC Power Module for Modern Shipboard Multi-Function AESA Radar Systems (함정용 다기능 AESA 레이더 시스템을 위한 고전압·고효율 DC-DC 전원모듈 개발)

  • Chong, Min-Kil;Lee, Won-Young;Kim, Sang-Keun;Kim, Su-Tae;Kwon, Simon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.50-60
    • /
    • 2021
  • For conventional AESA radars, DC-DC power modules using 300 Vdc have low efficiency, high volume, heavy weight, and high price, which have problems in modularity with T/R module groups. In this paper, to improve these problems, we propose a distributed DC-DC power module with high-voltage 800 Vdc and high-efficiency Step-down Converter. In particular, power requirements for modern and future marine weapons systems and sensors are rapidly evolving into high-energy and high-voltage power systems. The power distribution of the next generation Navy AESA radar antenna is under development with 1000 Vdc. In this paper, the proposed highvoltage, high-efficiency DC-DC power modules increase space(size), weight, power and cooling(SWaP-C) margins, reduce integration costs/risk, and reduce maintenance costs. Reduced system weight and higher reliability are achieved in navy and ground AESA systems. In addition, the proposed architecture will be easier to scale with larger shipboard radars and applicable to other platforms.

Selection of the Best Two-Hop AF Wireless Link under Multiple Antenna Schemes over a Fading Channel

  • Rahaman, Abu Sayed Md. Mostafizur;Islam, Md. Imdadul;Amin, M.R.
    • Journal of Information Processing Systems
    • /
    • v.11 no.1
    • /
    • pp.57-75
    • /
    • 2015
  • In evaluating the performance of a dual-hop wireless link, the effects of large and small scale fading has to be considered. To overcome this fading effect, several schemes, such as multiple-input multiple-output (MIMO) with orthogonal space time block codes (OSTBC), different combining schemes at the relay and receiving end, and orthogonal frequency division multiplexing (OFDM) are used in both the transmitting and the relay links. In this paper, we first make compare the performance of a two-hop wireless link under a different combination of space diversity in the first and second hop of the amplify-and-forward (AF) case. Our second task in this paper is to incorporate the weak signal of a direct link and then by applying the channel model of two random variables (one for a direct link and another for a relayed link) we get very impressive result at a low signal-to-noise ratio (SNR) that is comparable with other models at a higher SNR. Our third task is to bring other three schemes under a two-hop wireless link: use of transmit antenna selection (TAS) on both link with weak direct link, distributed Alamouti scheme in two-hop link and single relay antenna with OFDM subcarrier. Finally, all of the schemes mentioned above are compared to select the best possible model. The main finding of the paper is as follows: the use of MIMO on both hops but application TAS on both links with weak direct link and the full rate OFDM with the sub-carrier for an individual link provide a better result as compared to other models.

On Optimal Antenna Tilting Angles for Cooperative Transmissions Between Sectors in Cellular Systems (셀룰러 시스템의 섹터 간 협력 전송 시 최적의 안테나 틸팅 각도 결정 방식)

  • Ko, Jin-Seok;Kim, Jae-Won;Park, Jong-Hyun;Sung, Won-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.29-35
    • /
    • 2010
  • The cooperative transmission between sectors in next generation communications standards, e.g., 3GPP LTE-Advanced and IEEE 802.16m, has become an important research issue. Hence methods to decide the optimal antenna tilting angle in cooperative transmission between sectors are needed. This paper proposes methods to decide the optimal antenna tilting angle in cases of non-cooperative and cooperative transmissions between sectors. The proposed methods use an objective function that maximizes the cell average log rate or the cell average rate for users distributed uniformly within the radius of the sector. Also, the objective function which maximizes the cell average rate determined by adaptive modulation and coding (AMC) used in actual cellular systems is considered. When the cell average rate becomes the objective function, the system rate efficiency increases significantly for both cooperative and non-cooperative transmission. When the cell average log rate and the AMC rate become the objective functions, an optimal antenna tilting decision method which effectively increases the efficiency of cell boundary users is discussed.

A Formula Derivation of Channel Capacity Calculation in a MIMO System

  • Kabir, S.M.Humayun;Lee, Eun-Ju;Yoon, Gi-Wan
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.182-184
    • /
    • 2009
  • In this letter, we derive a tight closed-form formula for an ergodic capacity of a multiple-input multiple-output (MIMO) for the application of wireless communications. The derived expression is a simple closed-form formula to determine the ergodic capacity of MIMO systems. Assuming the channels are independent and identically distributed (i.i.d.) Rayleigh flat-fading between antenna pairs, the ergodic capacity can be expressed in a closed form as the finite sum of exponential integrals.