• 제목/요약/키워드: Distributed Parameter

검색결과 552건 처리시간 0.04초

Simulations of Frequency-dependent Impedance of Ground Rods Considering Multi-layered Soil Structures

  • Lee, Bok-Hee;Joe, Jeong-Hyeon;Choi, Jong-Hyuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권4호
    • /
    • pp.531-537
    • /
    • 2009
  • Lightning has a broad frequency spectrum from DC to a few MHz. Consequently, the high frequency performance of grounding systems for protection against lightning should be evaluated, with the distributed parameter circuit model in a uniform soil being used to simulate grounding impedances. This paper proposes a simulation method which applies the distributed parameter circuit model for the frequency-dependent impedance of vertically driven ground rods by considering multi-layered soil structures where ground rods are buried. The Matlab program was used to calculate the frequency-dependent ground impedances for two ground rods of different lengths. As a result, an increase of the length of ground rod is not always followed by a decrease of grounding impedance, at least at a high frequency. The results obtained using the newly proposed simulation method considering multi-layered soil structures are in good agreement with the measured results.

Necessary optimality conditions in the small for degenerate hyperbolic distributed-parameter control systems

  • Chang, Kun-Soo;Lee, In-Beum
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1043-1048
    • /
    • 1990
  • The degenerate case of multivariable hyperbolic distributed-parameter systems (systems of hyperbolic partial differential equations) in time coordinate t and space coordinate x is characterized by a property that all the characteristic curves of the state equations are parallel to the coordinate axes of independent variables. It is a disturbing fact, although not well known, that the so-called maximum principle as applied to these systems does not exist for the control that depend on time alone. In this paper, however, it is shown that a set of necessary conditions in the small can exist for unconstrained as well as magnitude constrained controls in a locally convex set. The necessary conditions thus derived can be used conveniently to find the optimal control for degenerate hyperbolic distributed-parameter control systems.

  • PDF

연속계의 이산화를 위한 새로운 모델링 기법 (A new modeling technique for the distributed parameter system - digital modeling approach)

  • 이용관;김인수;홍성욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1995년도 추계학술대회논문집; 한국종합전시장, 24 Nov. 1995
    • /
    • pp.227-232
    • /
    • 1995
  • This paper presents a digital modeling technique for the distributed parameter system. The basic idea of the proposed technique is to discretize a continuous system with respect to the spatial coordinate using the approximate methods such as bilinear method and backward difference method. The response of the discretized system is analyzed by Laplace transform and Z transform. The computational result of the proposed technique in a torsional shaft is compared with the exact solution and the result of the finite element method.

  • PDF

디지털 모델링 기법에 의한 1차원 연속계의 모드 해석 (Modal Analysis of One Dimensional Distributed Parameter Systems by Using the Digital Modeling Technique)

  • 홍성욱;조종환
    • 소음진동
    • /
    • 제9권1호
    • /
    • pp.103-112
    • /
    • 1999
  • A new modeling and analysis technique for one-dimensional distributed parameter systems is presented. First. discretized equations of motion in Laplace domain are derived by applying discretization methods for partial differential equations of a one-dimensional structure with respect to spatial coordinate. Secondly. the z and inverse z transformations are applied to the discretized equations of motion for obtaining a dynamic matrix for a uniform element. Four different discretization methods are tested with an example. Finally, taking infinite on the number of step for a uniform element leads to an exact dynamic matrix for the uniform element. A generalized modal analysis procedure for eigenvalue analysis and modal expansion is also presented. The resulting element dynamic matrix is tested with a numerical example. Another application example is provided to demonstrate the applicability of the proposed method.

  • PDF

매설지선의 임펄스임피던스의 해석 (Analysis for the impulsive impedance of counterpoise)

  • 조정현;김종호;백영환;김동성;이강수;김기복;이복희
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 춘계학술대회 논문집
    • /
    • pp.88-91
    • /
    • 2009
  • For lightning currents, a grounding system shows the transient grounding impedance characteristics. A grounding system for protection against lightning should be evaluated by the transient grounding impedance, not it's ground resistance. The transient grounding impedance varies with the shape of ground electrode and earth characteristics as well as the waveform of lightning surge current. For the analysis and practical use of transient grounding impedance, the characteristics of transient grounding impedance should be analyzed theoretically and this paper suggests the theoretical analysis for the transient grounding impedance of counterpoise by using the distributed parameter circuit model. EMTP and Matlab are used to simulate the distributed parameter circuit model of counterpoise and the adequacy of the distributed parameter model of counterpoise is examined by comparing the simulated results with the measured results.

  • PDF

분포정수회로 해석 방법을 이용한 지중선로 고장점 추정 알고리즘 (A Novel Algorithm of Underground Cable Fault Location based on the analysis of Distributed Parameter Circuit)

  • 양하;이덕수;최면송
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.412-414
    • /
    • 2004
  • In this paper, a novel algorithm of underground cable fault location based on the analysis of distributed parameter circuit is proposed. The proposed method makes voltage and current equations about core and sheath, and then establishes a function of the fault distance according to the analysis of fault conditions. Finally gets the solution of this function through Newton-Raphson iteration method. The effectiveness of proposed algorithm has been verified by Matlab program, and the cable parameters such as impedance and admittance are from EMTP simulation.

  • PDF

분포정수계 유압관로 모델의 동특성 해석 (Analysis of Dynamic Characteristics of Hydraulic Transmission Lines with Distributed Parameter Model)

  • 김도태
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.67-73
    • /
    • 2018
  • The paper deals with an approach to time domain simulation for closed end at the downstream of pipe, hydraulic lines terminating into a tank and series lines with change of cross sectional area. Time domain simulation of a fluid power systems containing hydraulic lines is very complex and difficult if the transfer functions consist of hyperbolic Bessel functions which is the case for the distributed parameter dissipative model. In this paper, the magnitudes and phases of the complex transfer functions of hydraulic lines are calculated, and the MATLAB Toolbox is used to formulate a rational polynomial approximation for these transfer functions in the frequency domain. The approximated transfer functions are accurate over a designated frequency range, and used to analyze the time domain response. This approach is usefully to simulate fluid power systems with hydraulic lines without to approximate the frequency dependent viscous friction.

Markov-Chain Monte Carlo 기법을 이용한 준 분포형 수문모형의 매개변수 및 모형 불확실성 분석 (Parameter and Modeling Uncertainty Analysis of Semi-Distributed Hydrological Model using Markov-Chain Monte Carlo Technique)

  • 최정현;장수형;김상단
    • 한국물환경학회지
    • /
    • 제36권5호
    • /
    • pp.373-384
    • /
    • 2020
  • Hydrological models are based on a combination of parameters that describe the hydrological characteristics and processes within a watershed. For this reason, the model performance and accuracy are highly dependent on the parameters. However, model uncertainties caused by parameters with stochastic characteristics need to be considered. As a follow-up to the study conducted by Choi et al (2020), who developed a relatively simple semi-distributed hydrological model, we propose a tool to estimate the posterior distribution of model parameters using the Metropolis-Hastings algorithm, a type of Markov-Chain Monte Carlo technique, and analyze the uncertainty of model parameters and simulated stream flow. In addition, the uncertainty caused by the parameters of each version is investigated using the lumped and semi-distributed versions of the applied model to the Hapcheon Dam watershed. The results suggest that the uncertainty of the semi-distributed model parameters was relatively higher than that of the lumped model parameters because the spatial variability of input data such as geomorphological and hydrometeorological parameters was inherent to the posterior distribution of the semi-distributed model parameters. Meanwhile, no significant difference existed between the two models in terms of uncertainty of the simulation outputs. The statistical goodness of fit of the simulated stream flows against the observed stream flows showed satisfactory reliability in both the semi-distributed and the lumped models, but the seasonality of the stream flow was reproduced relatively better by the distributed model.

Maximum Likelihood (ML)-Based Quantizer Design for Distributed Systems

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • 제13권3호
    • /
    • pp.152-158
    • /
    • 2015
  • We consider the problem of designing independently operating local quantizers at nodes in distributed estimation systems, where many spatially distributed sensor nodes measure a parameter of interest, quantize these measurements, and send the quantized data to a fusion node, which conducts the parameter estimation. Motivated by the discussion that the estimation accuracy can be improved by using the quantized data with a high probability of occurrence, we propose an iterative algorithm with a simple design rule that produces quantizers by searching boundary values with an increased likelihood. We prove that this design rule generates a considerably reduced interval for finding the next boundary values, yielding a low design complexity. We demonstrate through extensive simulations that the proposed algorithm achieves a significant performance gain with respect to traditional quantizer designs. A comparison with the recently published novel algorithms further illustrates the benefit of the proposed technique in terms of performance and design complexity.