• Title/Summary/Keyword: Distributed MAC protocol

Search Result 131, Processing Time 0.026 seconds

Energy-Conserving MAC Protocol in Ubiquitous Sensor Networks (유비쿼터스 센서 망에서의 에너지 절약형 매체접근 제어 프로토콜)

  • Yang, Hyun-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.177-185
    • /
    • 2008
  • Research on media access control (MAC) scheme for Wireless Sensor Network (WSN) has been mainly focused on energy efficiency improvement, while interest on latency is relatively weak. However, end-to-end latency could be a critical limitation specifically in the multi-hop network such as wireless multimedia sensor networks. In this paper we propose a media access control scheme with distributed transmission power control to Improve end-to-end transmission latency as well as reduce power consumption in multi-hop wireless sensor networks. According to the simulation results, the proposed scheme is turned out to be an energy efficient scheme with improved end-to-end transmission latency.

Performance Analysis of WiMedia D-MAC Communications for a Shipboard Wireless Bridge (선내 무선 브릿지용 와이미디어 D-MAC 통신의 성능분석)

  • Hur, Kyeong;Jeong, Min-A;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.7
    • /
    • pp.597-607
    • /
    • 2014
  • An integrated ship area network has functionality of remote control and autonomous management of various sensors and instruments embedded or boarded in a ship. For such environment, a wireless bridge is essential to transmit control and/or managing information to sensors or instruments from a central integrated ship area network station. In this paper, one of reliable schemes of wireless bridge using WiMedia distributed MAC (D-MAC) protocol is proposed to increase a communication reliability. Simulation results show that the proposed wireless bridge using WiMedia D-MAC protocol guarantees reliable communications between 2-hop devices.

Performance Enhancement of CSMA/CA MAC DCF Protocol for IEEE 802.11a Wireless LANs (IEEE 802.11a 무선 LAN에서 CSMA/CA MAC DCF 프로토콜의 성능 향상)

  • Moon, Il-Young;Roh, Jae-Sung;Cho, Sung-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.1
    • /
    • pp.65-72
    • /
    • 2004
  • A basic access method using for IEEE 802.11a wireless LANs is the DCF method that is based on the CSMA/CA. But, Since IEEE 802.11 MAC layer uses original backoff algorithm (Exponential backoff method), when collision occurs, the size of contention windows increases the double size. Hence, packet transmission delay time increases and efficiency is decreased by original backoff scheme. In this paper, we have analyzed TCP packet transmission time of IEEE 802.11 MAC DCF protocol for wireless LANs using a proposed enhanced backoff algorithm. From the results, in OFDM/quadrature phase shift keying channel (QPSK), we can achieve that the transmission time in wireless channel decreases as the TCP packet size increases and based on the data collected, we can infer the correlation between TCP packet size and total message transmission time, allowing for an inference of the optimal packet size in the TCP layer.

  • PDF

Channel Reservation based DCF MAC Protocol for Improving Performance in IEEE 802.11 WLANs (IEEE 802.11 무선 랜에서 성능 향상을 위한 채널 예약 기반 DCF MAC 프로토콜)

  • Hyun, Jong-Uk;Kim, Sunmyeng
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2159-2166
    • /
    • 2016
  • In the IEEE 802.11 DCF (Distributed Coordination Function) protocol, the binary exponential backoff algorithm is used to avoid data collisions. However, as the number of stations increases of, the collision probability tends to grow and the overall network performance is reduced. To solve this problem, this paper proposes a data transmission scheme based on the channel reservation method. In the proposed scheme, channel time is divided into reservation period and contention period. During the reservation period, stations succeeded in channel reservation transmit their own data packets in sequence without contention. During the contention period, each station sends its data packets through contentions as in DCF. During both the reservation period and the contention period, each station sends a request for channel reservation for the next reservation period to an AP (Access Point). After receiving such a channel reservation request from each station, the AP decides whether the reservation is succeeded and sends the result via a beacon frame to each station. Performance of the proposed scheme is analyzed through simulations. The simulation results show that the proposed scheme tends to reduce the collision probability of DCF and to improve the overall network performance.

Distributed Cognitive Radio MAC Protocol Considering User Fairness and Channel Quality (사용자의 공평성과 채널품질을 고려한 분산형 무선인지MAC 프로토콜)

  • Kwon, Young-Min;Park, Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • It is important that using of efficient radio resource because of deficiency spectrum problem, so that related to this problem many researches are have proceeded. To solve this problem, Cognitive Radio(CR) was suggested. The channels are allocated to the secondary users when the primary users don't use the channels, and unfairness of secondary users can be serious problem and channel quality of multichannel can be different due to the different traffic pattern of primary users. In this paper, we propose MAC prtocol both of the user's fairness and channel quality in CR networks. Simulation results show the comparison with CR MAC protocols.

Performance Analysis and Evaluation of EDCF Supporting Fairness in Wireless LANs (무선랜 상에서 공평성을 제공하는 EDCF 기법의 성능평가)

  • Choi, Kee-Hyun;Lee, Jae-Kyung;Shin, Dong-Ryeol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8B
    • /
    • pp.615-623
    • /
    • 2008
  • Wireless LAN (WLAN) has greatly benefited from the introduction of various technologies, such as MAC protocol and scheduling algorithm. The majority of these technologies focus on fairness or service differentiation. However, it is difficult to use these technologies to provide many benefits to WLAN simultaneously because the current WLAN system only focuses on the provision of a single aspect of QoS. Unfortunately, multimedia applications require both service differentiation and fairness. Therefore, this paper combines Distributed Fair Scheduling (DFS) and Enhanced Distributed Coordinate Function (EDCF), to provide both fairness and service differentiation simultaneously. Furthermore, we show numerical analysis using Markov process. The simulation results demonstrate that F-EDCF outperforms the EDCF, in terms of throughput, fairness, and delay viewpoints.

CCDC: A Congestion Control Technique for Duty Cycling WSN MAC Protocols

  • Jang, Beakcheol;Yoon, Wonyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3809-3822
    • /
    • 2017
  • Wireless Sensor Networks hold the limelight because of significant potential for distributed sensing of large geographical areas. The radio duty cycling mechanism that turns off the radio periodically is necessary for the energy conservation, but it deteriorates the network congestion when the traffic load is high, which increases the packet loss and the delay too. Although many papers for WSNs have tried to mitigate network congestion, none of them has mentioned the congestion problem caused by the radio duty cycling of MAC protocols. In this paper, we present a simple and efficient congestion control technique that operates on the radio duty cycling MAC protocol. It detects the congestion by checking the current queue size. If it detects the congestion, it extends the network capacity by adding supplementary wakeup times. Simulation results show that our proposed scheme highly reduces the packet loss and the delay.

Research for applying WUSB over WBAN Technology to Indoor Localization and Personal Communications in a Ship (선박 내 위치인식 및 개인 정보 전달을 위한 WBAN 기반 WUSB 기술 연구)

  • Kim, Beom-Mu;Hur, Kyeong;Lee, Yeonwoo;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.3
    • /
    • pp.318-326
    • /
    • 2013
  • In this paper, a novel WUSB (Wireless USB) over WBAN (Wireless Body Area Networks) MAC protocol is proposed to improve efficiency of sensing the personal information. Furthermore, a localization technique based on that protocol is also proposed for indoor localization in a ship. For this purpose, the proposed localization algorithm minimizes power consumption and estimates location with accuracy. It is executed independently at each sensor node on the basis of WUSB over WBAN protocol. And it minimizes power consumption by estimating locations of sensor nodes without GPS (Global Positioning Systems).

Formal Modeling and Verification of an Enhanced Variant of the IEEE 802.11 CSMA/CA Protocol

  • Hammal, Youcef;Ben-Othman, Jalel;Mokdad, Lynda;Abdelli, Abdelkrim
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.385-396
    • /
    • 2014
  • In this paper, we present a formal method for modeling and checking an enhanced version of the carrier sense multiple access with collision avoidance protocol related to the IEEE 802.11 MAC layer, which has been proposed as the standard protocol for wireless local area networks. We deal mainly with the distributed coordination function (DCF) procedure of this protocol throughout a sequence of transformation steps. First, we use the unified modeling language state machines to thoroughly capture the behavior of wireless stations implementing a DCF, and then translate them into the input language of the UPPAAL model checking tool, which is a network of communicating timed automata. Finally, we proceed by checking of some of the safety and liveness properties, such as deadlock-freedom, using this tool.

A Priority-based MAC Protocol to Support QoS in Ad-hoc Networks (애드 혹 네트워크 QoS 지원을 위한 우선순위 기반 MAC 프로토콜)

  • Wang, Weidong;Seo, Chang-Keun;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.80-89
    • /
    • 2005
  • In IEEE 802.11 and 802.11e for ad hoc networks, DCF and EDCA use a contention-based protocol called CSMA/CA, which is simple to implement efficient when the system is light loaded. But the performance of CSMA/CA decreases dramatically when the system load is heavy because of increasing collisions. In PCF and HCF modes, stations are controlled by a base station by polling, no collision ever occurs. However, when the system load is light, the performance is poor because few stations have data to transfer. More important, PCF and HCF can not be used in the ad hoc networks. In this paper, we address a priority-based distributed polling mechanism (PDPM) that implements polling scheme into DCF or EDCA modes for ad hoc networks by adding a polling approach before every contention-based procedure. PDPM takes the advantages of polling mechanism that avoids most of collisions in a high load condition. At the same time, it also keeps the contention-based mechanism for a light loaded condition. PDPM provides quality of service (QoS) with fewer collisions and higher throughput compared with IEEE 802.11e.