• Title/Summary/Keyword: Distributed Image Processing

Search Result 155, Processing Time 0.025 seconds

Distributed Image Preprocessing using Object Activation (객체 활성화를 이용한 분산 영상처리)

  • Heo, Jin-Kyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.87-92
    • /
    • 2011
  • Server overload is directly proportional to requested image data size in a image processing. If request data are increase then system is overloaded in a image processing system. For the reduce of server bottle neck, we will be able to consider a distributed processing. Simple distributed processing system can solve server bottleneck and system overload but high cost system requirements. In this paper, Proposes a new distributed image processing system. Object activation technology are being grafted on to simple distributed processing system. It can optimize the user of system resources and can reuse idle system resources in network.

FREE VIEWPOINT IMAGE RECONSTRUCTION FROM 3-D MULTI-FOCUS IMAGING SEQUENCES AND ITS IMPLEMENTATION BY CELL-BASED COMPUTING

  • Yonezawayz, Hiroki;Kodamay, Kazuya;Hamamotoz, Takayuki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.751-754
    • /
    • 2009
  • This paper deals with the Cell-based distributed processing for generating free viewpoint images by merging multiple differently focused images. We previously proposed the method of generating free viewpoint images without any depth estimation. However, it is not so easy to realize real-time image reconstruction based on our previous method. In this paper, we discuss the method to reduce the processing time by dimension reduction for image filtering and Cell-based distributed processing. Especially, the method of high-speed image reconstruction by the Cell processor on SONY PLAYSTATION3(PS3) is described in detail. We show some experimental results by using real images and we discuss the possibility of real-time free viewpoint image reconstruction.

  • PDF

Analysis of Implementing Mobile Heterogeneous Computing for Image Sequence Processing

  • BAEK, Aram;LEE, Kangwoon;KIM, Jae-Gon;CHOI, Haechul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4948-4967
    • /
    • 2017
  • On mobile devices, image sequences are widely used for multimedia applications such as computer vision, video enhancement, and augmented reality. However, the real-time processing of mobile devices is still a challenge because of constraints and demands for higher resolution images. Recently, heterogeneous computing methods that utilize both a central processing unit (CPU) and a graphics processing unit (GPU) have been researched to accelerate the image sequence processing. This paper deals with various optimizing techniques such as parallel processing by the CPU and GPU, distributed processing on the CPU, frame buffer object, and double buffering for parallel and/or distributed tasks. Using the optimizing techniques both individually and combined, several heterogeneous computing structures were implemented and their effectiveness were analyzed. The experimental results show that the heterogeneous computing facilitates executions up to 3.5 times faster than CPU-only processing.

Feasibility Study of a Distributed and Parallel Environment for Implementing the Standard Version of AAM Model

  • Naoui, Moulkheir;Mahmoudi, Said;Belalem, Ghalem
    • Journal of Information Processing Systems
    • /
    • v.12 no.1
    • /
    • pp.149-168
    • /
    • 2016
  • The Active Appearance Model (AAM) is a class of deformable models, which, in the segmentation process, integrates the priori knowledge on the shape and the texture and deformation of the structures studied. This model in its sequential form is computationally intensive and operates on large data sets. This paper presents another framework to implement the standard version of the AAM model. We suggest a distributed and parallel approach justified by the characteristics of the model and their potentialities. We introduce a schema for the representation of the overall model and we study of operations that can be parallelized. This approach is intended to exploit the benefits build in the area of advanced image processing.

DEVELOPMENT OF ROI PROCESSING SYSTEM USING QUICK LOOK IMAGE

  • Ahn, Sang-Il;Kim, Tae-Hoon;Kim, Tae-Young;Koo, In-Hoi
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.526-529
    • /
    • 2007
  • Due to its inherent feature of high-resolution satellite, there is strong need in some specific area to minimize the processing time required to get a standard image on hand from downlink signal acquisition. However, in general image processing system, it takes considerable time to get image data up to certain level from raw data acquisition because the huge amount of data is dealt sequentially as input data. This paper introduces the high-speed image processing system which generates the image data only for the area selected by user. To achieve the high speed performance, this system includes Quick Look Image display function with sampling, ROI selection function, Image Line Index function, and Distributed processing function. The developed RPS was applied to KOMPSAT-2 320Mbps downlink channel and its effectiveness was successfully demonstrated. This feature to provide the image product very quickly is expected to promote the application of high resolution satellite image.

  • PDF

FAST Design for Large-Scale Satellite Image Processing (대용량 위성영상 처리를 위한 FAST 시스템 설계)

  • Lee, Youngrim;Park, Wanyong;Park, Hyunchun;Shin, Daesik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.372-380
    • /
    • 2022
  • This study proposes a distributed parallel processing system, called the Fast Analysis System for remote sensing daTa(FAST), for large-scale satellite image processing and analysis. FAST is a system that designs jobs in vertices and sequences, and distributes and processes them simultaneously. FAST manages data based on the Hadoop Distributed File System, controls entire jobs based on Apache Spark, and performs tasks in parallel in multiple slave nodes based on a docker container design. FAST enables the high-performance processing of progressively accumulated large-volume satellite images. Because the unit task is performed based on Docker, it is possible to reuse existing source codes for designing and implementing unit tasks. Additionally, the system is robust against software/hardware faults. To prove the capability of the proposed system, we performed an experiment to generate the original satellite images as ortho-images, which is a pre-processing step for all image analyses. In the experiment, when FAST was configured with eight slave nodes, it was found that the processing of a satellite image took less than 30 sec. Through these results, we proved the suitability and practical applicability of the FAST design.

Real-time system control for the 6-DOF simulation (6-DOF 시뮬레이터의 real-time 시스템 제어에 관한 연구)

  • 김영대;김충영;백인철;민성기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.17-21
    • /
    • 1989
  • 6-DOE simulator system is designed to real-time processing for motion control, data acquisition, image generation and image processing etc.. In this paper, we introduce hardware and software design technologies for distributed processing, event-trapping, system monitoring and time scheduling procedure in 6-DOF simulator system design.

  • PDF

Development of Medical Picture Archiving and Communication System (의료용 화상정보의 저장 및 전송 시스템 개발)

  • 이태수;백승권
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.195-210
    • /
    • 1988
  • We build up distributed database of medical picture and design and realize H/W & S/W of special image workstation. We build up high speed image transmission system for distributed database and retrieval of various medical pictures in w ard through image transmission system and realize integrated image diagnosis. This system improves medical service by speedy diagnosis and enables more precise diagnosis by integrated image diagnosis through distributed database. In economical view this system curtails huge cost of film processing and transmission, which make medical expense cheaf, because it does not use film. We built up PACS in pediatric hospital of Seoul National University Hopital and tested the system with various medical pictures and showed that speedy integrated image diagnosis is possible.

  • PDF

A Fast and Scalable Image Retrieval Algorithms by Leveraging Distributed Image Feature Extraction on MapReduce (MapReduce 기반 분산 이미지 특징점 추출을 활용한 빠르고 확장성 있는 이미지 검색 알고리즘)

  • Song, Hwan-Jun;Lee, Jin-Woo;Lee, Jae-Gil
    • Journal of KIISE
    • /
    • v.42 no.12
    • /
    • pp.1474-1479
    • /
    • 2015
  • With mobile devices showing marked improvement in performance in the age of the Internet of Things (IoT), there is demand for rapid processing of the extensive amount of multimedia big data. However, because research on image searching is focused mainly on increasing accuracy despite environmental changes, the development of fast processing of high-resolution multimedia data queries is slow and inefficient. Hence, we suggest a new distributed image search algorithm that ensures both high accuracy and rapid response by using feature extraction of distributed images based on MapReduce, and solves the problem of memory scalability based on BIRCH indexing. In addition, we conducted an experiment on the accuracy, processing time, and scalability of this algorithm to confirm its excellent performance.

Spatial Clearinghouse Components for OpenGIS Data Providers

  • Oh, Byoung-Woo;Kim, Min-Soo;Lee, Jong-Hun
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.84-88
    • /
    • 1999
  • Recently, the necessity of accessing spatial data from remote computer via network has been increased as distributed spatial data have been increased due to their size and cost. Many methods have been used in recent years for transferring spatial data, such as socket, CORBA, HTTP, RPC, FTP, etc. In this paper, we propose spatial clearinghouse components to access distributed spatial data sources via CORBA and Internet. The spatial clearinghouse components are defined as OLE/COM components that enable users to access spatial data that meet their requests from remote computer. For reusability, we design the spatial clearinghouse with UML and implement it as a set of components. In order to enhance interoperability among different platforms in distributed computing environment, we adopt international standards and open architecture such as CORBA, HTTB, and OpenGIS Simple Features Specifications. There are two kinds of spatial clearinghouse: CORBA-based spatial clearinghouse and Internet-based spatial clearinghouse. The CORBA-based spatial clearinghouse supports COM-CORBA bridge to access spatial data from remote data providers that satisfy the OpenGIS Simple Features Specification for OLE/COM using COM and CORBA interfaces. The Internet-based spatial clearinghouse provides Web-service components to access spatial data from remote data providers using Web-browser.

  • PDF