• Title/Summary/Keyword: Distributed Control Algorithm

Search Result 466, Processing Time 0.037 seconds

Dynamic File Migration And Mathematical model in Distributed Computer Systems (분산 시스템에서 동적 파일 이전과 수학적 모델)

  • Moon, Won Sik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.35-40
    • /
    • 2014
  • Many researches have been conducted to achieve improvement in distributed system that connects multiple computer systems via communication lines. Among others, the load balancing and file migration are considered to have significant impact on the performance of distributed system. The dynamic file migration algorithm common in distributed processing system involved complex calculations of decision function necessary for file migration and required migration of control messages for the performance of decision function. However, the performance of this decision function puts significant computational strain on computer. As one single network is shared by all computers, more computers connected to network means migration of more control messages from file migration, causing the network to trigger bottleneck in distributed processing system. Therefore, it has become imperative to carry out the research that aims to reduce the number of control messages that will be migrated. In this study, the learning automata was used for file migration which would requires only the file reference-related information to determine whether file migration has been made or determine the time and site of file migration, depending on the file conditions, thus reflecting the status of current system well and eliminating the message transfer and additional calculation overhead for file migration. Moreover, mathematical model for file migration was described in order to verify the proposed model. The results from mathematical model and simulation model suggest that the proposed model is well-suited to the distributed system.

Development of Pprocess Models by Partial Differential Equations and Ccontrol Systems (화학 공정의 편미분 방정식 모델설정과 제어에 관한 연구)

  • 최영순;이인범;장근수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.105-107
    • /
    • 1991
  • A chemical process model represented by partial differential equations was studied as one of nonlinear distributed parameter control problems. Using an optimal control theory in the form of maximum principles based on nonlinear integral equations, an algorithm to solve the problem was developed and coded into a computer program.

  • PDF

A QoS Prediction Management System in Distributed Multimedia Networks

  • Ueno, Yoshito
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06b
    • /
    • pp.95-100
    • /
    • 1996
  • User's qualities of services (QoS) are the basic requirements involved in distributed multimedia systems. Considering ATM network, ATM adapter cannot control the end-to-end connection satisfying the user's QoS. This paper describes the new concept of a QoS prediction management system in the distributed network and the configuration of it's QoS prediction management architecture and also discusses it's algorithm.

  • PDF

Scheduling of Sporadic and Periodic Tasks and Messages with End-to-End Constraints

  • Kim, Hyoung-Yuk;Kim, Sang-Yong;Oh, Hoon;Park, Hong-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.747-752
    • /
    • 2004
  • Researches about scheduling of the distributed real-time systems have been proposed. However, they have some weak points, not scheduling both sporadic and periodic tasks and messages or being unable to guaranteeing the end-to-end constraints due to omitting precedence relations between sporadic tasks. So this paper proposes a new scheduling method for distributed real-time systems consisting of sporadic and periodic tasks with precedence relations and sporadic and periodic messages, guaranteeing end-to-end constraints. The proposed method is based on a binary search-based period assignment algorithm, an end-to-end laxity-based priority assignment algorithm, and three kinds of schedulability analysis, node, network, and end-to-end schedulability analysis. In addition, this paper describes the application model of sporadic tasks with precedence constraints in a distributed real-time system, shows that existing scheduling methods such as Rate Monotonic (RM) scheduling are not proper to be applied to the system having sporadic tasks with precedence constraints, and proposes an end-to-end laxity-based priority assignment algorithm.

  • PDF

Distributed Uplink Resource Allocation in Multi-Cell Wireless Data Networks

  • Ko, Soo-Min;Kwon, Ho-Joong;Lee, Byeong-Gi
    • Journal of Communications and Networks
    • /
    • v.12 no.5
    • /
    • pp.449-458
    • /
    • 2010
  • In this paper, we present a distributed resource allocation algorithm for multi-cell uplink systems that increases the weighted sum of the average data rates over the entire network under the average transmit power constraint of each mobile station. For the distributed operation, we arrange each base station (BS) to allocate the resource such that its own utility gets maximized in a noncooperative way. We define the utility such that it incorporates both the weighted sum of the average rates in each cell and the induced interference to other cells, which helps to instigate implicit cooperation among the cells. Since the data rates of different cells are coupled through inter-cell interferences, the resource allocation taken by each BS evolves over iterations. We establish that the resource allocation converges to a unique fixed point under reasonable assumptions. We demonstrate through computer simulations that the proposed algorithm can improve the weighted sum of the average rates substantially without requiring any coordination among the base stations.

Implementation of a real-time neural controller for robotic manipulator using TMS 320C3x chip (TMS320C3x 칩을 이용한 로보트 매뉴퓰레이터의 실시간 신경 제어기 실현)

  • 김용태;한성현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.65-68
    • /
    • 1996
  • Robotic manipulators have become increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. The TMS32OC31 is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the, network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure, fast in computation, and suitable for implementation of real-time, control. Performance of the neural controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

Control of Multi-Joint Manipulator Using PD-Sliding Mode (PD-슬라이딩 모드를 이용한 다 관절 매니퓰레이터 제어)

  • Son, Hyun-Seok;Lee, Won-Ki;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1286-1293
    • /
    • 2008
  • This paper proposes a realization of robust trajectory tracking for an industrial robot by using PD-sliding mode hybrid control. The PD control has a good performance in the transient period while the sliding mode control has robustness against the system uncertainties. The proposed control method is proposed for the control of a multi-joint robot by taking advantages of both the PD and sliding mode controls. The embodiment of distributed controllers that drive 4-DOF axes has evaluated through experiments with the multi-joint robot AT1. The PD-sliding mode algorithm which is proposed in this paper shows a good performance in the transient period and robustness against disturbances and This paper shows accuracy of end-effector.

Optimal Trajectory Planning for Cooperative Control of Dual-arm Robot (양팔 로봇의 협조제어를 위한 최적 경로 설계)

  • Park, Chi-Sung;Ha, Hyun-Uk;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.891-897
    • /
    • 2010
  • This paper proposes a cooperative control algorithm for a dual-arms robot which is carrying an object to the desired location. When the dual-arms robot is carrying an object from the start to the goal point, the optimal path in terms of safety, energy, and time needs to be selected among the numerous possible paths. In order to quantify the carrying efficiency of dual-arms, DAMM (Dual Arm Manipulability Measure) has been defined and applied for the decision of the optimal path. The DAMM is defined as the intersection of the manipulability ellipsoids of the dual-arms, while the manipulability measure indicates a relationship between the joint velocity and the Cartesian velocity for each arm. The cost function for achieving the optimal path is defined as the summation of the distance to the goal and inverse of this DAMM, which aims to generate the efficient motion to the goal. It is confirmed that the optimal path planning keeps higher manipulability through the short distance path by using computer simulation. To show the effectiveness of this cooperative control algorithm experimentally, a 5-DOF dual-arm robot with distributed controllers for synchronization control has been developed and used for the experiments.

Sensor Nodes Selecting Schemes-based Distributed Target Tracking Filter for Underwater Wireless Sensor Networks (센서노드 선정기법 기반 수중 무선센서망 분산형 표적추적필터)

  • Yu, Chang Ho;Choi, Jae Weon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.694-701
    • /
    • 2013
  • This paper deals with the problem of accurately tracking a single target moving through UWSNs (Underwater Wireless Sensor Networks) by employing underwater acoustic sensors. This paper addresses the issues of estimating the states of the target, and improving energy efficiency by applying a Kalman filter in a distributed architecture. Each underwater wireless sensor nodes composing the UWSNs is battery-powered, so the energy conservation problem is a critical issue. This paper provides an algorithm which increases the energy efficiency of each sensor node through WuS (Waked-up/Sleeping) and VM (Valid Measurement) selecting schemes. Simulation results illustrate the performance of the distributed tracking filter.

Formation Control Algorithm for Coupled Unicycle-Type Mobile Robots Through Switching Interconnection Topology (스위칭 연결 구조를 갖는 외발형 이동 로봇들에 대한 대형 제어 알고리듬)

  • Kim, Hong-Keun;Shim, Hyung-Bo;Back, Ju-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.439-444
    • /
    • 2012
  • In this study, we address the formation control problem of coupled unicycle-type mobile robots, each of which can interact with its neighboring robots by communicating their position outputs. Each communication link between two mobile robots is assumed to be established according to the given time-varying interconnection topology that switches within a finite set of connected fixed undirected networks and has a non-vanishing dwell time. Under this setup, we propose a distributed formation control algorithm by using the dynamics extension and feedback linearization methods, and by employing a consensus algorithm for linear multi-agent systems which provides arbitrary fast convergence rate to the agreement of the multi-agent system. Finally, the proposed result is demonstrated through a computer simulation.