포장의 공용성에 영향을 미치는 주요파손은 소성변형, 피로균열, 종단평탄성이다. 따라서 이들 세가지 파손량에 영향을 미치는 요인들을 분석하고 예측모델을 개발하는 것이 포장의 공용성 관리면에서 중요하다. 본 논문에서는 미국에서 개발되어 다양한 포장구간에 대한 광범위한 데이터가 축적되어 있는 DataPave 프로그램을 이용하여 세가지 파손량과 각각에 영향을 미치는 인자들을 추출한 후 파손 예측모델을 개발하였다. 개발된 모델의 입력변수들이 각각의 파손량에 미치는 영향을 파악하기 위해 민감도분석을 수행하였다. 소성변형 예측모델의 민감도분석결과 아스팔트함량, 공극율, 노상의 최적함수비가 주요영향인자로 나타났으며, 피로균열예측모델의 경우 아스팔트점도, 아스팔트함량, 공극율 순으로 나타났다. 종단평탄성 예측모델 분석결과 아스팔트점도, 노상골재의 200번체 통과율, 아스팔트함량 순으로 영향을 미치는 것을 알 수 있었다.
HIONG, Hii King;JALIL, Muhammad Farhan;SENG, Andrew Tiong Hock
The Journal of Asian Finance, Economics and Business
/
제8권8호
/
pp.1-12
/
2021
Altman's Z-score is used to measure a company's financial health and to predict the probability that a company will collapse within 2 years. It is proven to be very accurate to forecast bankruptcy in a wide variety of contexts and markets. The goal of this study is to use Altman's Z-score model to forecast insolvency in non-financial publicly traded enterprises. Non-financial firms are a significant industry in Malaysia, and current trends of consolidation and long-term government subsidies make assessing the financial health of such businesses critical not just for the owners, but also for other stakeholders. The sample of this study includes 84 listed companies in the Kuala Lumpur Stock Exchange. Of the 84 companies, 52 are considered high risk, and 32 are considered low-risk companies. Secondary data for the analysis was gathered from chosen companies' financial reports. The findings of this study show that the Altman model may be used to forecast a company's financial collapse. It dispelled any reservations about the model's legitimacy and the utility of applying it to predict the likelihood of bankruptcy in a company. The findings of this study have significant consequences for investors, creditors, and corporate management. Portfolio managers may make better selections by not investing in companies that have proved to be in danger of failing if they understand the variables that contribute to corporate distress.
본 연구의 목적은 전통적인 통계과 기계학습(Machine Learning)을 통해 중국 문화산업 기업의 재무적 곤경을 정확하게 예측하는 분석 모형을 탐색하는 데 있다. 예측모형을 구축하기 위하여 중국 128개 문화산업상장 기업의 데이터를 수집하였다. 25개 설명변수로 이뤄진 데이터베이스를 토대로 판별분석과 로지스틱 회귀(Logistic) 등 전통적인 통계 방법과 서포트 벡터 기계(SVM), 결정 트리(Decision Tree)와 랜덤 포레스트(Random Forest) 등 기계학습을 이용한 예측모형을 구축하고 각 모형의 성능 평가를 위해 Python 소프트웨어를 사용한다. 분석 결과, 예측 성능이 가장 좋은 모형은 랜덤 포레스트(Random Forest) 모형으로 95%의 정확도를 보였다. 그 다음은 서포트 벡터 기계(SVM) 모형으로 93%의 정확도를 보였다. 그 다음은 결정 트리(Decision Tree) 모형으로 92%의 정확도를 보였다. 그 다음은 판정분석 모형으로 89%의 정확도를 보였다. 예측 효과가 가장 낮은 모형은 로지스틱 회귀(Logistic) 모형으로 88%의 정확도를 보였다. 이는 중국 문화산업 기업의 재무적 곤경을 예측하면서 기계학습 모형이 전통적인 통계 모형보다 더 좋은 예측 효과를 얻을 수 있음을 설명한다.
Objectives The purpose of this study is to evaluate the effects of attachment security, social support and health-related burden in the prediction of psychological distress and the mediation effects of social support and health-related burden in relationship between attachment security and psychological distress. Methods Finally, 161 patients were included for the analysis. Chi-square test and independent samples t-test were used for comparing differences between depressive/anxious group and non-depressive/non-anxious group. For evaluating the relationship among attachment security, social support, psychological distress and health-related burden, structural equation modeling analysis were performed. Results 40.7% and 32.0% of the patients have significant depressive symptoms and anxiety symptoms, respectively. In the analysis for testing the differences between groups who have psychological distress and who have not, there were no significant differences of sociodemographic factors and medical characteristics between groups, except for association between depressive symptoms and type of surgery (p = 0.01). Contrary to sociodemographic and medical characteristics, there were significant differences of health-related burden and two coping resources (attachment security and social support) between groups (all p < 0.01), except for the support from medical team in between anxious group and non-anxious group (p = 0.20). In the structural equation model analysis (Model fit : chi-square/df ratio = 0.8, root mean square error of approximation = 0.000, comparative fit index = 1.000, non-normed fit index =0.991), attachment security and social support emerged as an important predictor of psychopathology. Conclusions Attachment security and social support are important factors affecting the psychological distress. We suggest that individual attachment style and the social support state must be considered to approach the newly diagnosed breast cancer patients with psychological distress.
PURPOSES : The purpose of this study is to develop a regression model to predict the International Roughness Index(IRI) and Surface Distress(SD) for the estimation of HPCI using Expressway Pavement Management System(PMS). METHODS : To develop an HPCI prediction model, prediction models of IRI and SD were developed in advance. The independent variables considered in the models were pavement age, Annual Average Daily Traffic Volume(AADT), the amount of deicing salt used, the severity of Alkali Silica Reaction(ASR), average temperature, annual temperature difference, number of days of precipitation, number of days of snowfall, number of days below zero temperature, and so on. RESULTS : The present IRI, age, AADT, annual temperature differential, number of days of precipitation and ASR severity were chosen as independent variables for the IRI prediction model. In addition, the present IRI, present SD, amount of deicing chemical used, and annual temperature differential were chosen as independent variables for the SD prediction model. CONCLUSIONS : The models for predicting IRI and SD were developed. The predicted HPCI can be calculated from the HPCI equation using the predicted IRI and SD.
해양조난사고 발생 시 해상 익수자의 안전과 생명 보장을 위해 구조자산을 활용한 신속한 탐색 및 구조작전은 매우 중요하다. 본 연구는 해양관측부이에서 수집되는 기상정보에 다중선형회귀분석, 의사결정나무, 서포트벡터머신, 벡터자기회귀, 순환신경망의 LSTM을 활용하여 울릉도 북서해역의 표층해류를 분석하고 유향과 유속에 대한 각각의 예측모형을 구축하여 예측된 유향과 유속정보를 통해 해상 익수자의 이동경로를 예측하는 모형들을 제안한다. 본 연구에서 적용한 다양한 기계학습 모형을 MAE와 RMSE의 성능 평가척도로 비교해 볼 때 LSTM이 가장 우수한 성능을 보였다. 또한, 익수자 이동지점과 예측모형의 예측지점 간 거리 차이에 있어서도 LSTM이 다른 모형들에 비해 탁월한 성능을 나타내었다.
아스팔트 포장에서 소성변형은 교통하중에 의해 발생하는 가장 심각한 파손중의 하나이다. 현재 개발중인 한국형 포장 설계법은 역학적-경험적 설계법으로 다양한 포장 파손 예측모델을 필요로 한다. 이 연구는 포장설계시 아스팔트층에서 발생하는 소성 변형량을 예측할 수 있는 모델을 개발하여 포장의 공용성을 규명하고자 하였다. 본 논문은 아스팔트 혼합물의 소성변형에 영향을 미치는 인자를 규명하고, 소성변형 예측 모델을 개발하고자 한다. 이를 위하여 3단계 온도, 공극률을 조합한 19mm 밀입도 혼합물에 대하여 삼축압축 반복재하시험을 수행하였다. 그 결과 혼합물의 온도와 공극률이 소성변형 예측 모델 계수에 영향을 미치는 것으로 확인되었다. 이에 근거하여 19mm밀입도 아스팔트 혼합물에 대한 소성변형 예측식을 다중 회귀분석을 통하여 개발하였으며, 개발된 모델을 검증하였다.
2020년 8월 정부는 한국판 뉴딜을 뒷받침하기 위한 공공기관의 역할 강화방안으로서 각 공공기관별 역량을 바탕으로 5대 분야에 걸쳐 총 20가지 과제를 선정하였다. 빅데이터(Big Data), 인공지능 등을 활용하여 대국민 서비스를 제고하고 공공기관이 보유한 양질의 데이터를 개방하는 등의 다양한 정책을 통해 한국판 뉴딜(New Deal)의 성과를 조기에 창출하고 이를 극대화하기 위한 다양한 노력을 기울이고 있다. 그중에서 한국무역보험공사(KSURE)는 정책금융 공공기관으로 국내 수출기업들을 지원하기 위해 여러 제도를 운영하고 있는데 아직까지는 본 기관이 가지고 있는 빅데이터를 적극적으로 활용하지 못하고 있는 실정이다. 본 연구는 한국무역보험공사의 수출신용보증 사고 발생을 사전에 예측하고자 공사가 보유한 내부 데이터에 기계학습 모형을 적용하였고 해당 모형 간에 예측성과를 비교하였다. 예측 모형으로는 로지스틱(Logit) 회귀모형, 랜덤 포레스트(Random Forest), XGBoost, LightGBM, 심층신경망을 사용하였고, 평가 기준으로는 전체 표본의 예측 정확도 이외에도 표본별 사고 확률을 구간으로 나누어 높은 확률로 예측된 표본과 낮은 확률로 예측된 경우의 정확도를 서로 비교하였다. 각 모형별 전체 표본의 예측 정확도는 70% 내외로 나타났고 개별 표본을 사고 확률 구간별로 세부 분석한 결과 양 극단의 확률구간(0~20%, 80~100%)에서 90~100%의 예측 정확도를 보여 모형의 현실적 활용 가능성을 보여주었다. 제2종 오류의 중요성 및 전체적 예측 정확도를 종합적으로 고려할 경우, XGBoost와 심층신경망이 가장 우수한 모형으로 평가되었다. 랜덤포레스트와 LightGBM은 그 다음으로 우수하며, 로지스틱 회귀모형은 가장 낮은 성과를 보였다. 본 연구는 한국무역보험공사의 빅데이터를 기계학습모형으로 분석해 업무의 효율성을 높이는 사례로서 향후 기계학습 등을 활용하여 실무 현장에서 빅데이터 분석 및 활용이 활발해지기를 기대한다.
PMS(Pavement Management System) is the effective and efficient decision making system to provide pavements in an acceptable condition at the lowest life-cycle cost. As the highway system become larger, the necessity of the PMS in increasing. As of December 1995, the 3rd stage of PMS project was completed. The accomplishment of the research work can be itemized to the followings : $\bullet$ Calibration of PMS submodules (1) Pavement Condition Evaluation Model (2) Pavement Distress Prediction Model (3) Pavement Performance Prediction Mode (4) Selection of Pavement Rehabilitation Criteria (5) Optimization Technique for PMS Economic Analysis $\bullet$ Development of Computer Program to Implement PMS Logic $\bullet$ A Study to Implement the Automized Pavement Condition Survey Equipment to PMS $\bullet$ PMS Test Run $\bullet$ Development of PMS Operation Guideline $\bullet$ The 2nd Pavement Condition Survey for Long-Term Pavement Performance Monitoring.
본 연구의 목적은 국내 대표 아스팔트 혼합물의 소성변형특성을 평가하고, 이를 이용하여 소성변형을 예측할 수 있는 파손모형을 다중회귀분석을 이용하여 개발하는 것이다. 2가지 아스팔트 바인더와 5종의 골재입도를 이용하였고, 2개의 다른 공극률(6%, 10%)로 시편을 제작하였다. 시험은 30, 45, 60 온도에서 3가지 구속하중을 이용하여 삼축압축 반복재하시험을 수행하였다. 이를 이용하여 소성변형에 영향을 미치는 인자를 규명하고 소성변형 예측모델을 개발하고자 한다. 소성변형 시험의 결과를 이용한 소성변형 예측 모델을 다중회귀분석을 이용하여 제안하였으며 모델의 신뢰도를 분석하였다. 회귀분석을 이용한 소성변형 모델은 AASHTO 2002 설계법에서 제시한 예측식을 기본으로 소성변형에 영향을 미치는 인자인 온도, 하중재하횟수, 공극률을 주요 변수로 하였다. 이를 SPSS 통계프로그램을 이용하여 제시하였으며 실제 시험값과 모델의 예측값으로 신뢰도를 분석하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.