• Title/Summary/Keyword: Distillation extraction

Search Result 337, Processing Time 0.03 seconds

Volatile Compounds Isolated from Edible Korean Fatsia Shoots (Aralia elata Seem.) (두릅의 휘발성 향기성분에 관한 연구)

  • Kim, So-Mi;Chung, Tae-Young
    • Applied Biological Chemistry
    • /
    • v.39 no.5
    • /
    • pp.389-397
    • /
    • 1996
  • The volatile concentrate obtained from the edible Korean dureup plant (Aralia elata Seem.) by a distillation-extraction system was separated into hydrocarbon and oxygen-containing fractions, and the latter was further separated into nine subfractions by silica gel column chromatography. Gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS) were utilized to identify 167 volatile compounds in the fractions. The volatile compounds included 72 hydrocarbons, 31 alcohols, 23 aldehydes, 16 esters, 10 acids, 6 ketons, 3 furans, 2 phenols, 1 indole, 1 oxide, 1 sulfide, and 1 lactone. ${\beta}-Caryopyllene$, a sesquiterpene hydrocarbon, was the most abundant volatile compound identified in Korean dureup (19.53%). Dureup oil was found to possess a woody or herbaceous aroma following sensory evaluation of each fraction and individual volatile component using a GC-sniff apparatus.

  • PDF

Effect of the Volatile Constituents of Mugwort Seed Extract on the Growth of Microorganism (쑥씨 중의 정유성분이 미생물의 생육에 미치는 영향)

  • Jung, Byung-Sun;Lee, Byung-Ku;Shim, Sun-Taek;Lee, Jung-Kun
    • Journal of the Korean Society of Food Culture
    • /
    • v.4 no.4
    • /
    • pp.417-424
    • /
    • 1989
  • The volatile constituents of Mugwort seeds were extracted by simultaneous steam distillation-extraction apparatus, and analyzed by combined GC and GC-MS. Of the 73 compounds identified from Mugwort seed extract, the main volatile compounds were campher (14.242%), borneol(12.812%), 1.8-cineol(6.437%) and terpinen-4-ol(1.185%) comprising about 35%. Effect of the volatile constituents (champher, borneol, 1.8-cineol, terpinen-4-ol and essential oil) on the growth of Microorganism (B. subtilis, E. coli, S. cerevisiae, L. mesenteroides, L. Plantarum, A. oryzae). Of the volatile compounds had a antibiological effect, terpinen-4-ol was the most effective in volatile compound.

  • PDF

Development of Functional Products Using Chamaecyparis Obtusa Heartwood Essential Oil (편백심재오일을 이용한 기능성 제품 개발)

  • Choi, Ju-Hyeon;Park, Jeong-Hyeon;Cho, Yun-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.2
    • /
    • pp.211-218
    • /
    • 2021
  • The purpose of this study is to develop how to extract essential oil from heartwood of chamaecyparis obtusa and commercialize eco-friendly products using essential oil. Manufacturing process consisted of 8 steps: pulverization, input, pretreatment, extraction(steam distillation), steam emission, cooling, separation, aging. Through the method developed in this study, chamaecyparis obtusa oil with excellent quality in antibacterial effect can be extracted with high productivity. Also, chamaecyparis obtusa spray using this oil had good antibacterial and deodorant effects, and got no irritation results in the clinical test. To commercialize spray, we built a commercial website and performed consumer survey on the site. The survey results showed that respondents had positive attitude toward the products and their messages in the site. When the production standardization through precise quality control and the optimization of composition ratio are accomplished, this study will contribute to commercialize various types of cosmetics and quasi-drugs.

A study on the physiological activity effect as a cosmetic material using 3 kinds of domestic plants and combination oil (국내산 식물 3종과 조합 오일의 화장품 소재로서의 생리활성 효과 연구)

  • Jung, Sook Heui;Jung, Heui-Sook
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.303-313
    • /
    • 2022
  • In this study, the extracted oils and commercial oils (Clarisse) were analyzed after GC-MSD fragrance component analysis for each natural essential oil obtained through steam distillation extraction (cypress, seokchangpo, lavender) of a total of three plants grown and grown in Jangheung area. Easy, cinnamon, frankincense) was combined to confirm cytotoxicity, antioxidant, anti-inflammatory, and whitening effects, confirming its potential as a cosmetic material. As a result of the analysis of fragrance components, sabinene was identified as the main component of cypress oil, asarone in seokchangpo oil, and L-Linalool in lavender oil. At a concentration of 100 𝜇L/mL with no cytotoxicity of 6 essential combination oils, NO production was inhibited by 27.76%, DPPH radical scavenging activity was 99.69%, ABTS radical scavenging activity was 94.66%, and tyrosinase inhibitory activity was 55.9%. Possibility of being useful as a raw material for functional cosmetics was presented.

Evaluation of Genetic Characteristics and Essential oil Composition of Coriander (Coriandrum sativum L.)

  • Tae Hee Kim;Song Mun Kim;Ki Yeon Lee;Kyung Dae Kim;Jae Hee Lee;Eun Ha Jang;Jin Gwan Ham
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.320-320
    • /
    • 2022
  • Coriander(Coriandrum sativum L.) belongs to the family Umbelliferae/Apiaceae. It is cultivated as a spice and medicinal herb around the world, including its leaves and seeds. Coriander leaves have soft and fragrant, so they can be used in cuisines such as China, Mexico, and, Southeast Asia. Coriander leaves contain a high amount of vitamin C, carotene, and multiple polyphenols. Coriander essential oils and extracts have various chemical components and are known to have antioxidant, antibacterial, and antifungal activities. This study was carried out for resource discovery, propagation, and DB construction of aromatic plants. In order to evaluate the genetic characteristics, 30 kinds of Coriander seeds were supplied from the Center for Genetic Resources. The evaluation of characteristics of the basal part leaf number, leaf shape, and plant height was investigated. Also, Essential oils extract from various parts of plants including the leaves, flowers, and steam isolated by simultaneous distillation extraction(SDE) apparatus. In the results, heights showed growing to 70 cm over and basal part leaf number 0 to7. The leaves are variable, they are measured according to leaves incisions, and most of the included incision. The qualitative analysis of EOs was performed using gas chromatography-mass spectrometry. EOs had various chemical compositions. Major compounds were trans-2-Decenal, linalool, decanal, 2-Dodecenal, 13-Tetradecanal, 2-Undecenal.

  • PDF

Essential Oil Composition from Leaves, Flowers, Stems, and Fruits of Vitex rotundifolia L. fil. (순비기나무(Vitex rotundifolia L. fil.)의 부위별 정유성분 조성)

  • Jang, Soo-Jung;Kim, Young-Hoi;Kim, Myung-Kon;Kim, Kei-Whan;Yun, Sei-Eok
    • Applied Biological Chemistry
    • /
    • v.45 no.2
    • /
    • pp.101-107
    • /
    • 2002
  • The essential oils isolated from leaves, flowers, stems, and fruits of Vitex rotundifolia by steam distillation and extraction (SDE) method were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). A total of 76 components detected by GC, 42 components were identified positively by GC-MS and GC co-injection with authentic standards, and 34 components were identified tentatively by mass spectral data only. They included 16 monoterpene hydrocarbons, 30 oxygenated hydrocarbons, 10 sesquiterpene hydrocarbons, 8 oxygenated sesquiterpenes, 3 diterpenes, and 9 miscellaneous components. The major components in the oil from the leaves were ${\alpha}-pinene$ (30.25%), 1,8-cineole (19.89%), sabinene (9.56%), ${\alpha}-terpineol$ (7.94%), ${\beta}-pinene$ (5.69%), and terpinen-4-ol (2.37%), and those in the flower oil were ${\alpha}-pinene$ (25.47%), 1,8-cineole (7.69%), manoyl oxide (6.21%), ${\beta}-pinene$ (4.20%), ${\alpha}-te.pineol$ (3.76%), and sabinene (2.78%). The major components in the oil from the stems were ${\alpha}-pinene$ (13.24%), ${\alpha}-terpineol$ (10.64%), 1,8-cineole (4.40%), manoyl oxide (4.02%), ${\beta}-pinene$ (2.39%), and terpinen-4-ol (2.21%) while those in the oil from the fruits were ${\alpha}-pinene$ (20.24%), 1,8-cineole (11.47%), ${\beta}P-pinene$ (9.79%), ${\alpha}-terpineol$ (7.08%), sabinene (3.68%), and limonene (2.77%). The percentage composition of monoterpenes in the oils from the leaves and the fruits were higher than in those from the flowers and the stems, whereas the oil from the flowers and the stems were characterized by a large content of sesquiterpenes, diterpenes and other unknown high molecular weight components.

Preparation of High Quality Grape Seed Oil by Solvent Extraction and Chemical Refining Process (용매추출 및 화학적 정제법에 의한 고품질의 포도씨유의 제조)

  • Choi Sang-Won;Chung Ui-Seon;Lee Ki-Teak
    • Food Science and Preservation
    • /
    • v.12 no.6
    • /
    • pp.600-607
    • /
    • 2005
  • This study was conducted to prepare high quality grape seed oils by solvent extraction and chemical refining process. Additionally, quantitative analysis of several functional components in grope seed was carried out to compare quality characteristics of grape seeds from grapes grown by conventional and organic agricultural practices. There are no significant differences in several functional constituents of grape seeds between conventionally cultivated- and organically cultivated-grapes, although some functional compositions of grape seeds are different between two cultivation methods. The dried grape seed was pretreated with roasting heating for 5 min, milled and then extracted twice with n-hexane under reflux at $50^{\circ}C$ for overnight, followed by filtration and evaporation. The crude grape seed oil was successively purified by degumming with $0.1\%\;H_3PO_4$, deaciding with $20\%\;NaOH$, and then decoloring and deodorization by a steam distillation, and thereby producing purified grape seed oil(yield: $5.0\%/dried$ grape seed). Physicochemical characteristics of the purified grape seed oil were comparable to those of the imported grape seed oils.

Parametric Study for the Optimal Integration Design between the Gas Turbine Compressor and the Air Separation Unit of IGCC Power Plant (석탄가스화 복합발전플랜트 가스터빈 압축기와 공기분리장치 간의 최적 연계설계를 위한 매개변수연구)

  • Lee, Chan;Kim, Hyung-Taek
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.160-169
    • /
    • 1996
  • Parametric studies are conducted for optimizing the integration design between gas turbine compressor and air separation unit (ASU) of integrated gasification combined cycle power plant. The present study adopts the ASU of double-distillation column process, from which integration conditions with compressor such as the heat exchanger condition between air and nitrogen, the amount and the pressure of extracted air are defined and mathematically formulated. The performance variations of the compressor integrated with ASU are analyzed by combining streamline curvature method and pressure loss models, and the predicted results are compared with the performance test results of actual compressors to verify the prediction accuracy. Using the present performance prediction method, the effects of pinch-point temperature difference (PTD) in the heat exchanger, the amount and the pressure of extracted air on compressor performances are quantitatively examined. As the extraction air amount or the PTD is increased, the pressure ratio and the power consumption of compressor are increased. The compressor efficiency deteriorates as the increase of the flow rate of air extracted at higher pressure level while improving at lower pressure air extraction. Furthermore, through the characteristic curve between generalized inlet condition and efficiency of compressor, optimal integration condition is presented to maximize the compressor efficiency.

  • PDF

Comparative Studies on the Amino Acids and Flavor Compounds Among Some Varieties of Perilla Leaves Cultivated in Miryang Area (밀양지역 들깨품종별 잎의 아미노산 조성 및 향기성분 비교)

  • Choi Young-Whan;Lee Young-Guen
    • Journal of Life Science
    • /
    • v.14 no.6 s.67
    • /
    • pp.931-937
    • /
    • 2004
  • The present investigation was carried out to determine the qualitative difference between 4 varieties of perilla leaves cultivated Miryang area, particularly focusing on the amino acid composition and flavor compounds. Aspartic acid, glutamic acid, glycine, alanine, arginine, and threonine were the major amino acids, and tyrosine and cysteine and methionine containing sulfur were detected as little amount in protein of all perilla leaves. All perilla leaves contained about 34 kinds of free amino acids, and the major free amino acids were same as the protein bound amino acids. However, no significant difference among 4 varieties of perilla leaves was observed in the profiles of protein bound and free amino acids composition. Flavor compounds analyzed by GC-MSD following to extraction of flavor by SDE (Simultaneous Steam Distillation-Extraction) were detected as 51 kinds from 'Leafy perilla 1', 47 kinds from 'Yupsil perilla', 46 kinds from 'Miryang 9' and 'YCPL. The major volatile compound was perilla ketone, its concentration was $145.75\;{\mu}g/g$ in 'Miryang 9', $187.00\;{\mu}g/g$ in 'YCPL', $301.59\;{\mu}g/g$ in 'Leafy perilla l' and $551.42\;{\mu}g/g$ in 'Yupsil perilla', but the other flavor compounds, 3-hexen-l-ol, trans-2-hexenal, $\beta-caryophyllene,\;\alpha-farnesene$ and etc, were less than $20\;{\mu}g/g$.

Composition and Cytotoxicity of Essential Oil from Korean rhododendron (Rhododendon mucronulatum Turcz. var. ciliatum Nakai) (털진달래(Rhododendon mucronulatum Turcz. var. ciliatum Nakai) 정유의 성분분석과 독성평가)

  • Park, Yu-Hwa;Kim, Song-Mun
    • Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.233-237
    • /
    • 2008
  • The essential oil was obtained from the aerial part of Rhododendon mucronulatum Turcz. var. ciliatum Nakai by steam distillation, samples were collected by headspace (HS) and solid-phase microextraction (SPME) methods, and the compositions of the oil were analyzed by gas chromatography-mass spectrometry (GC-MS). Nineteen constituents were identified from the essential oil: 15 carbohydrates, 3 alcohols, and 1 acetates. Major constituents were 2-${\beta}$-pinene (16.1%), camphene (11.9%), ${\delta}$-3-carene (11.4%), d,l-limonene (9.5%), and ${\gamma}$-terpinene (9.5%). By SPME extraction, seventeen constituents were identified: 13 hydrocarbons, 1 alcohol, 1 nitrogen-containing compound, 1 acetate, and 1 amine. Major constituents of the SPME-extracted sample were cam phene (19.6%), 2-${\beta}$-pinene (18.0%), ${\delta}$-3-carene (17.4%), trimethyl hydrazine (9.7%), ${\gamma}$-terpinene (8.5%), and d,l-limonene (5.5%). By HS extraction, thirteen constituents were identified: 11 hydrocarbons, 1 alcohol, and 1 nitrogen-containing compound. Major constituents of the HS-extracted sample were camphene (25.8%), ${\delta}$-3-carene (24.8%), 2-${\beta}$-pinene (20.2%), d,l-limonene (5.4%), tricyclene (5.1%) and trimethyl hydrazine (4.6%). The fragrance of the essential oil was coniferous, balsamic, and woody, and the $IC_{50}$ value of the essential oil was 0.030 ${\mu}g/mg$ in MTT assay using UaCaT keratinocyte cell line.