• Title/Summary/Keyword: Distillation Efficiency

Search Result 87, Processing Time 0.019 seconds

Design and Optimization of Extractive Thermally Coupled Distillation System (추출 열 통합 증류계의 설계 및 최적화)

  • Cho, Hoon;Woo, Daesik;Choi, Yumi;Han, Myungwan
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.270-276
    • /
    • 2012
  • In this study, thermally coupled distillation system and conventional two-column process were investigated for extractive distillation. The two processes were simulated and optimized using Aspen plus. Objective function for the optimization was energy consumption and optimization results to reduce energy consumption were used to get guidelines for design and operation for the two extractive distillation processes. Comparison of these two processes showed that thermally coupled distillation system provided better energy efficiency and lower capital cost than conventional distillation system.

Multi- effect air gap membrane distillation process for pesticide wastewater treatment

  • Pangarkar, Bhausaheb L.;Deshmukh, Samir K.;Thorat, Prashant V.
    • Membrane and Water Treatment
    • /
    • v.8 no.6
    • /
    • pp.529-541
    • /
    • 2017
  • A multi-effect air gap membrane distillation (ME-AGMD) module for pesticide wastewater treatment is studied with internal heat recovery, sensible heat of brine recovery, number of stages and the use of fresh feed as cooling water in a single module is implemented in this study. A flat sheet polytetrafluroethylene (PTFE) membrane was used in the 4-stage ME-AGMD module. The maximum value of permeate flux could reach $38.62L/m^2h$ at feed -coolant water temperature difference about $52^{\circ}C$. The performance parameter of the module like, specific energy consumption and gain output ratio (GOR) was investigated for the module with and without heat recovery. Also, the module performance was characterized with respect to the separation efficiency of several important water quality parameters. The removal efficiency of the module was found to be >98.8% irrespective water quality parameters. During the experiment the membrane fouling was caused due to the deposition of the salt/crystal on the membrane surface. The membrane fouling was controlled by membrane module washing cycle 9 h and also by acidification of the feed water (pH=4) using 0.1M HCl solution.

Study on Control Efficiency of Fully Thermally Coupled Distillation Column for BTX Separation (BTX 분리용 열복합 증류탑의 제어성능에 관한 연구)

  • Kim, Mi Hee;Park, Chang Won;Lee, Ju-Yeong;Kim, Young Han;Hwang, Kyu Suk
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.725-730
    • /
    • 2010
  • The fully thermally coupled distillation columns(FTCDC) are thermodynamically more efficient than conventional columns. Despite these advantages, industry has been reluctant to use FTCDC. This can be largely attributed to the lack of established design procedures and column operability. In this study, the $3{\times}3$control structure was applied to control the FTCDC which was simulated using Aspen HYSYS on the possible control structure of 4 kinds and control performance was investigated. As the result of dynamic simulations, one of the proposed structures had better controllability of product compositions and control efficiency was evaluated.

Fundamental Study on a Distillation Separation of a LiCl-KCl Eutectic Salt from Rare Earth Precipitates (희토류 침전물로부터 LiCl-KCl 공융염의 증류 분리에 관한 기초연구)

  • Yang, Hee-Chul;Eun, Hee-Chul;Kim, In-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.65-70
    • /
    • 2010
  • The distillation rate on LiCl-KCl eutectic salt under different vacuums from 0.5-50 mmHg was first investigated by using both a non-isothermal and a isothermal thermogravimetric (TG) analysis. Based on the non-isothermal TG data, distillation rate equations as a function of the temperature could be derived. Calculated flux by these model flux equations was in agreement with the distillation rate obtained from isothermal TG analysis. A distillation rate of $10^{-4}-10^{-5}$ mole $cm^{-2}sec^{-1}$ is obtainable at temperatures less than 1300K and vacuums of 0.5-50 mmHg. About a 99% salt distillation efficiency was obtained after an hour at a temperature above 1150 K under 50 mmHg in a small scale distillation test system. An increase in the vaporizing surface area is relatively effective for removing residual salt in the remaining particles, when compared to that for the vaporizing time. Over 99.95% of total distillation efficiency was obtained for a 1-h distillation operation by increasing the inner surface area from $4.52cm^2$ to $12.56cm^2$.

Development of Multi Effect Distillation for Solar Thermal Seawater Desalination System (태양열 해수담수화 시스템을 위한 다중효용 담수기 개발)

  • Joo, Hong-Jin;Hwang, In-Seon;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • This study was accomplished to evaluate the performance of Multi Effect Distillation(MED) for solar thermal desalination system. It was designed Multi effect distillation with $3m^3$/day capacity and Shell&Tube type heat exchanger. Also, The effective heat transfer of Shell&Tube heat exchanger was used Cu(90%)-Ni(10%) corrugated tube. The parameters relating to the performance of Multi Effect Distillation are known as hot water flow rate. The experimental conditions for each parameters were $18^{\circ}C$ for sea water inlet temperature, $6m^3$/hour sea water inlet volume flow rate, $75^{\circ}C$ for hot water inlet temperature, 2.4, 3.6, and $4.8\;m^3$/hour for hot water inlet volume flow rate, respectively. The results are as follows, Development for Multi effect distillation was required about 40kW heat and 35kW cooling source to produce $3m^3$/day of fresh water. Based on the results of this study, It makes possible to secure economics of desalination system with solar energy which is basically needed development of high efficiency fresh water generator.

Development of Small Distillation Column for Performance Evaluation of Distillation Column (증류탑 성능평가에 적합한 소형 증류탑 개발)

  • Kim, Byoung Chul;Cho, Tae Je;Kim, Young Han
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.668-671
    • /
    • 2010
  • A lab scale distillation experiment is conducted with small size packing used in lab scale multi-tray distillation equipment for the performance evaluation of distillation system. A sufficient surface are yielded with 6.7 mm cylindrical packings made of stainless steel, and a good liquid holdup and residence time are resulted. The comparison between the theoretical tray from the HYSYS and the experimental distillation outcome indicates that a 7 cm HETP from 27 cm packing height and a 8 cm HETP from 45 cm packing height are obtained. Comparing with the 8 cm HETP of commercial structured packing shows a similar experimental results obtained here. The 7 cm HETP is available with a complete insulation, and the importance of the insulation is proved. The results of this study indicates that a practical distillation column used in field can be tested in lab.

Comparative study of air gap, direct contact and sweeping gas membrane distillation configurations

  • Loussif, Nizar;Orfi, Jamel
    • Membrane and Water Treatment
    • /
    • v.7 no.1
    • /
    • pp.71-86
    • /
    • 2016
  • The present study deals with a numerical simulation for the transport phenomena in three configurations of Membrane Distillation (Air Gap, Direct Contact and Sweeping Gas Membrane Distillation) usually used for desalination in order to make an objective comparison between them under the same operating conditions. The models are based on the conservation equations for the mass, momentum, energy and species within the feed saline and cooling solutions as well as on the mass and energy balances on the membrane sides. The theoretical model was validated with available data and was found in good agreement. DCMD configuration provided the highest pure water production while SGMD shows the highest thermal efficiency. Process parameters' impact on each configuration are also presented and discussed.

Changes in Extraction Efficiency of Pine Needles depending on Extraction Method and the Condition (추출 방법과 조건에 따른 소나무 지엽 추출효율 변화)

  • Kim, Dong Sung;Kim, Hyung Min;Sung, Yong Joo;Kang, Seog Goo;Kang, Ho-Yang;Lee, Jun-Woo;Kim, Se Bin;Park, Gwan-Soo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.1
    • /
    • pp.93-99
    • /
    • 2016
  • The extraction efficiency depending on the extracting methods and the conditions of extraction was investigated. The common steam extraction was compared to the distillation extraction method. The effects of the samples size and the extraction time on the extract yield were also investigated by using UV-Vis spectrophotometer. One of the functional components of pine needle extract as the natural phenol base components were detected by the UV-VIS at around 235 nm wavelength range. The absorbance intensity at around 235 nm wavelength of the pine needle extract was used as the indicator of the extraction efficiency in this experiment. The distillation extraction showed the higher extract yield than the steam extraction. The grinding treatment of pine needles also resulted in the better extract performance, but the severe grinding showed a little decrease in the extract yield especially in case of the distillation extraction method. More than half of the extract was collected at the first stage of the extraction, that was the first 15 minutes in the total 60 minutes extraction.

Energy Conservation and Exergy Comparison of a Fully Thermally Coupled Distillation Column (열복합 증류탑의 에너지 절감과 엑서지 비교)

  • Kim, Byoung Chul;Kim, Young Han
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.55-60
    • /
    • 2012
  • The energy conservation and exergy loss of a fully thermally coupled distillation commercialized as the divided wall column are compared with those of a conventional two-column system for ternary separation. The used example for the comparison is the benzene-toluene-m-xylene separation process widely used in a petrochemical plant. The design procedure of the fully thermally coupled distillation column is explained, and the energy requirement is compared using the HYSYS. When the same numbers of trays are utilized, the fully thermally coupled distillation column uses 28.2% less energy and 10.4% more exergy loss. The increase of the exergy loss is due to the additional mixing from the bidirectional inter-linking and the temperature elevation in the reboiler from the increased pressure at the bottom of the main column.

Numerical study of desalination by Sweeping Gas Membrane Distillation

  • Loussif, Nizar;Orfi, Jamel
    • Membrane and Water Treatment
    • /
    • v.11 no.5
    • /
    • pp.353-361
    • /
    • 2020
  • The present study deals with a numerical investigation of heat and mass transfer in a Sweeping Gas Membrane Distillation (SGMD) used for desalination. The governing equations expressing the conservation of mass, momentum, energy and species with coupled boundary conditions were solved numerically. The slip boundary condition applied on the feed saline solution-hydrophobic membrane interface is taken into consideration showing its effects on profiles and process parameters.The numerical model was validated with available experimental data and was found to be in good agreement particularly when the slip condition is considered. The results of the simulations highlighted the effect of slip boundary condition on the velocity and temperature distributions as well as the process effectiveness. They showed in particular that as the slip length increases, the permeate flux of fresh water and process thermal efficiency rise.