Fundamental Study on a Distillation Separation of a LiCl-KCl Eutectic Salt from Rare Earth Precipitates

희토류 침전물로부터 LiCl-KCl 공융염의 증류 분리에 관한 기초연구

  • Received : 2009.12.18
  • Accepted : 2010.03.29
  • Published : 2010.03.30

Abstract

The distillation rate on LiCl-KCl eutectic salt under different vacuums from 0.5-50 mmHg was first investigated by using both a non-isothermal and a isothermal thermogravimetric (TG) analysis. Based on the non-isothermal TG data, distillation rate equations as a function of the temperature could be derived. Calculated flux by these model flux equations was in agreement with the distillation rate obtained from isothermal TG analysis. A distillation rate of $10^{-4}-10^{-5}$ mole $cm^{-2}sec^{-1}$ is obtainable at temperatures less than 1300K and vacuums of 0.5-50 mmHg. About a 99% salt distillation efficiency was obtained after an hour at a temperature above 1150 K under 50 mmHg in a small scale distillation test system. An increase in the vaporizing surface area is relatively effective for removing residual salt in the remaining particles, when compared to that for the vaporizing time. Over 99.95% of total distillation efficiency was obtained for a 1-h distillation operation by increasing the inner surface area from $4.52cm^2$ to $12.56cm^2$.

비등온 및 등온조건에서의 열중량분석을 이용하여 다양한 압력조건(0.5 - 50 mmHg)에서 LiCl-KCl 공융염 증류속도를 우선 측정하였다. 비등온조건에서의 열중량분석결과로부터 온도의 함수로 표현될 수 있는 증류 속도식을 도출하였다. 이 속도식에 의해 계산된 휘발플럭스(flux)는 등온조건에서의 열중량분석을 통해 얻어진 증류속도와 일치하였다. 1300 K 이하의 온도조건과 0.5 mmHg와 50 mmHg 사이의 감압조건에서 $10^{-4}-10^{-5}$ mole $cm^{-2}sec^{-1}$의 증류속도를 얻을 수 있다. 실험실규모 실험장치에서 50 mmHg의 압력과 1150 K 이상의 온도 조건에서 한 시간 증류로 약 99%의 염이 분리되었다. 희토류 침전물내에 잔류하는 염을 증류에 의해 제거할 때 휘발시간이나, 온도를 증가시키는 것보다 휘발 계면적을 증가시키는 것이 효과가 더 큰 것으로 나타났으며, 휘발면적을 $4.52cm^2$에서 $12.56cm^2$로 증가시켜 한 시간 동안 증류하였을 때 99.95% 이상의 염이 분리되었다.

Keywords

References

  1. V. A. Volkovich, T. R. Griffiths, D. J. Fray, R. C. Thied, "Treatment of molten salt waste by phosphate precipitation: removal of fission products clements after pyrochemical reprocessing of spent nuclear fuels in chloride melts," J. Nucl. Mater., 323, pp. 49-56 (2003). https://doi.org/10.1016/j.jnucmat.2003.08.024
  2. T. Inoue, "Actinide recycling by pyroprocess with metal fuel FBR, " Progress in Nuclear Energy, 40, pp. 547-554 (2002). https://doi.org/10.1016/S0149-1970(02)00049-5
  3. J. J. Laidler, J. E. Battles, W. E. Miller, J. P. Ackerman and E. L. Carls, "Development of pyroprocessing technology," Progress in Nuclear Energy, 31, pp. 131-140 (1997). https://doi.org/10.1016/0149-1970(96)00007-8
  4. J. J. Laidler, L. Burris, E. D. Collins, J. Duguid, R. N. Henry, J. Hill, E. J. Karell, S. M. AcDeavitt, M. Thomson, M. A. Williamson, J. L. Willit, "Chemical partitioning technologies for an ATW system," Progress in Nuclear Energy, 38, pp. 65-79 (2001). https://doi.org/10.1016/S0149-1970(00)00096-2
  5. J. P. Ackerman, T. R. Johnson, L. S. H. Chow, E. L. Carls, W. H. Hannum and J. J. Aidler, "Treatment of wastes in the IFR fuel cycle," Progress in Nuclear Energy, 31, pp. 141-154 (1997). https://doi.org/10.1016/0149-1970(96)00008-X
  6. 유재형, 이병직, 이한수, 김응호, "고온전해분리 기술의 개용 및 기존 핵연료주기 대체 기술로서의 적합성 검토," 방사성폐기물학회지, 5(4), pp. 283-295 (2007).
  7. 은희철, 양희철, 조용준, 이한수, 김인태, "산화조건에서 PrCl3의 열적거동," 방사성폐기물학회지, 7(4), 발간중 (2009).
  8. E. H. Kim, G. I. Park, Y. J. Cho and H. C. Yang, "A new approach to minimize pyroprocessing waste salts through a series of fission product removal, Nuclear Technology, 2, pp. 208-218 (2008).
  9. Y. J. Cho, H. C. Yang, H. C. Eun, E. H. Kim and I. T. Kim, "Characteristics of oxidation reaction of rare-earth chlorides for precipitation in LiCI-KCI molten salt by oxygen sparging," J. Nucl. Sci. Technol. 43, pp. 1280-1286 (2006). https://doi.org/10.3327/jnst.43.1280
  10. A. G. Croff, "ORIGEN2: A versatile computer code for calculating the nuclide compositions and characteristics of nuclear materials," Nucl. Technol., 62, pp. 335 (1983). https://doi.org/10.13182/NT83-1
  11. H. C. Yang, J. H. Kim, W. Z. Oh, H. S. Park and Y. C. Seo, .Behavior of radioactive etals in a laboratory furnace and a demonstration-scale incinerator," Environ. Eng. Sci. 15, pp. 199-311 (2004).
  12. T. Koyama, T. Hijikata, T. Usami, T. Inoue, S. Kitawaki, T. Shinozaki, M. Fukushima, M. Myochin, "Integrated experiments of electrometallurgical pyroprocessing using plutonium oxide," J. Nucl. Sci. Technol., 44(3), pp. 382-392 (2007). https://doi.org/10.3327/jnst.44.382
  13. B. Westphal, K. C. Marsden, J. C. Price, D. V. Laug, "On the development of a distillation process for the electrometallurgical treatment of irradiated spent nuclear fuel," Nucl. Eng. Technol., 40, pp. 163-174 (2008). https://doi.org/10.5516/NET.2008.40.3.163