• Title/Summary/Keyword: Distance variation analysis technique

Search Result 29, Processing Time 0.027 seconds

GPS Data Collection and Application for the Analysis of Car Following Behavior (차량의 추종행태 분석을 위한 GPS 자료의 수집과 적용)

  • Woo, Yong-Han
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.4
    • /
    • pp.11-21
    • /
    • 2000
  • The travel behavior should be analysed microscopically for the traffic management of urban street. The car following theory which found out the correlation between the lead and the following vehicles is being widely used as basic data in many fields. As the vehicle position and its speed information can be received by GPS, this technique is recently applying to the various fields. For the case study the travel data were collected with two vehicles equipped with GPS receiver. The moving distance was calculated by the collected location data every 2 seconds and the speed variation was checked. And this study analysed and compared the acceleration and deceleration speed between the lead and the following vehicle. Finally, Regression model about the relationship between the acceleration and deceleration speed and the acceleration and deceleration distance was constructed. This model could be helpful for the road design and the regulation for the safe traffic management.

  • PDF

Genetic Variation and Polymorphism in Rainbow Trout, Oncorhynchus mykiss Analysed by Amplified Fragment Length Polymorphism

  • Yoon, Jong-Man;Yoo, Jae-Young;Park, Jae-Il
    • Journal of Aquaculture
    • /
    • v.17 no.1
    • /
    • pp.69-80
    • /
    • 2004
  • The objective of the present study was to analyze genetic distances, variation and characteristics of individuals in rainbow trout, Oncorhynchus mykis using amplified fragment length polymorphism (AFLP) method as molecular genetic technique, to detect AFLP band patterns as genetic markers, and to compare the efficiency of agarosegel electrophoresis (AGE) and polyacrylamide gel electrophoresis (PAGE), respectively. Using 9 primer combinations, a total of 141 AFLP bands were produced, 108 bands (82.4%) of which were polymorphic in AGE. In PAGE, a total of 288 bands were detected, and 220 bands (76.4%) were polymorphic. The AFLP fingerprints of AGE were different from those of PAGE. Separation of the fragments with low molecular weight and genetic polymorphisms revealed a distinct pattern in the two gel systems. In the present study, the average bandsharing values of the individuals between two populations apart from the geographic sites in Kangwon-do ranged from 0.084 to 0.738 of AGE and PAGE. The bandsharing values between individuals No.9 and No. 10 showed the highest level within population, whereas the bandsharing values between individuals No.5 and No.7 showed the lowest level. As calculated by bandsharing analysis, an average of genetic difference (mean$\pm$SD) of individuals was approximately 0.590$\pm$0.125 in this population. In AGE, the single linkage dendrogram resulted from two primers (M11+H11 and M13+H11), indicating six genetic groupings composed of group 1 (No.9 and 10), group 2 (No. 1, 4, 5, 7, 10, 11, 16 and 17), group 3 (No. 2, 3, 6, 8, 12, 15 and 16), group 4 (No.9, 14 and 17), group 5 (No. 13, 19, 20 and 21) and group 6 (No. 23). In AGE, the genetic distances among individuals of between-population ranged from 0.108 to 0.392. In AGE, the shortest genetic distance (0.108) displaying significant molecular differences was between individuals No.9 and No. 10. Especially, the genetic distance between individuals No. 23 and the remnants among individuals within population was highest (0.392). Additionally, in the cluster analysis using the PAGE data, the single linkage dendrogram resulted from two primers (M12+H13 and M11+H13), indicating seven genetic groupings composed of group 1 (No. 15), group 2 (No. 14), group 3 (No. 11 and 12), group 4 (No.5, 6, 7, 8, 10 and 13), group 5 (No.1, 2, 3 and 4), group 6 (No.9) and group 7 (No. 16). By comparison with the individuals in PAGE, genetic distance between No. 10 and No. 7 showed the shortest value (0.071), also between No. 16 and No. 14 showed the highest value (0.242). As with the PAGE analysis, genetic differences were certainly apparent with 13 of 16 individuals showing greater than 80% AFLP-based similarity to their closest neighbor. The three individuals (No. 14, No. 15 and No. 16) of rainbow trout between two populations apart from the geographic sites in Kangwon-do formed distinct genetic distances as compared with other individuals. These results indicated that AFLP markers of this fish could be used as genetic information such as species identification, genetic relationship or analysis of genome structure, and selection aids for genetic improvement of economically important traits in fish species.

Model-Based Object Recognition using PCA & Improved k-Nearest Neighbor (PCA와 개선된 k-Nearest Neighbor를 이용한 모델 기반형 물체 인식)

  • Jung Byeong-Soo;Kim Byung-Gi
    • The KIPS Transactions:PartB
    • /
    • v.13B no.1 s.104
    • /
    • pp.53-62
    • /
    • 2006
  • Object recognition techniques using principal component analysis are disposed to be decreased recognition rate when lighting change of image happens. The purpose of this thesis is to propose an object recognition technique using new PCA analysis method that discriminates an object in database even in the case that the variation of illumination in training images exists. And the object recognition algorithm proposed here represents more enhanced recognition rate using improved k-Nearest Neighbor. In this thesis, we proposed an object recognition algorithm which creates object space by pre-processing and being learned image using histogram equalization and median filter. By spreading histogram of test image using histogram equalization, the effect to change of illumination is reduced. This method is stronger to change of illumination than basic PCA method and normalization, and almost removes effect of illumination, therefore almost maintains constant good recognition rate. And, it compares ingredient projected test image into object space with distance of representative value and recognizes after representative value of each object in model image is made. Each model images is used in recognition unit about some continual input image using improved k-Nearest Neighbor in this thesis because existing method have many errors about distance calculation.

Modelling Spatial Variation of Housevalue Determinants (주택가격 결정인자의 공간적 다양성 모델링)

  • Kang Youngok
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.6 s.105
    • /
    • pp.907-921
    • /
    • 2004
  • Lots of characteristics such as dwelling, neighborhood, and accessibility characteristics affect to the housevalue. Many researches have been done to identify values of each characteristic using hedonic technique. However, there is a limit to identify interaction of each characteristic and variation of each characteristic among the accessibility context. This paper has implemented the Expansion Method research paradigm to model the housevalue determination process in the city of Seoul. The findings of this paper have revealed the presence of contextual variations in the housevalue determination process. The initial model for housevalue reveals that as $F_1$ increases (i.e., larger the number of rooms/bathrooms, larger parking space) and/or $F_2$ increases (i.e., higher owner occupied housing units, higher apartment housing units) and/or $F_3$ increases, (i.e., higher the ratio of higher than college graduated households, 8 school zone, older housing units) the estimated housevalue increases. However, the above relationships drift across their respective contexts. The houses which have negative $F_1$ value, the housevalue does not fluctuate according to the distance to the city center or subcenters. However, the houses which have positive $F_1$ value, the closer to the subcenters or shorter to the river, the higher the estimated housevalues. On the other hand, in areas far from the subcenters, the estimated housevalues does not fluctuate much according to the corresponding $F_2$ level. In areas close to the subcenters, the estimated housevalues vary tremendously according to the $F_2$ value. In the residual analysis, it is revealed that large apartment which are located in Kangnam, IchongDong, MokDong are underestimated. This paper has contributed to our understanding of the housevalue determination process by providing an alternative conceptualization to the traditional approach.

Genetic Analysis of 5 Mountain Cultivated Ginseng and Wild Ginseng in Korea (국내 5개 지역의 장뇌삼과 산삼의 유전 분석)

  • Ahn, Ji-Young;Kang, Sang-Gu;Kang, Ho-Duck
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.757-763
    • /
    • 2009
  • ISSR PCR technique was applied to investigate genetic relationship among 5 Mountain cultivated ginseng populations (Jinan, Hongcheon, Punggi, Andong and Yeongju) and cDNA libraries of wild ginseng roots were constructed and analyzed functional genes related to morphogenesis via EST. Twenty four ISSR markers tested produced 127 polymorphic loci from 5 regional Mountain cultivated ginseng. Among the regional samples, Yeongju was made 18 polymorphic loci that were the highest level of variations among the cultivated regions. The range of similarity coefficient was 0.46~0.58 and the regional samples of Punggi and Hongcheon, Jinan and Andong were classified to similar groups respectively, whereas Yeongju was shown to be separate group with high level of genetic variation in UPGMA cluster analysis. As a result, there was no relationship according to geographical distance and genetic similarity. Eleven cDNA clones were consisted of 9 known genes and 2 unknown genes analyzed by BLAST program of NCBI. To recognize expression pattern of Homeodomain transcription factor related genes, Northern Blot analysis was performed for wild ginseng's leaf and root. As a result, the gene was only expressed by Mountain wild ginseng root.

Analysis Method for Full-length LiDAR Waveforms (라이다 파장 분석 방법론에 대한 연구)

  • Jung, Myung-Hee;Yun, Eui-Jung;Kim, Cheon-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.4 s.316
    • /
    • pp.28-35
    • /
    • 2007
  • Airbone laser altimeters have been utilized for 3D topographic mapping of the earth, moon, and planets with high resolution and accuracy, which is a rapidly growing remote sensing technique that measures the round-trip time emitted laser pulse to determine the topography. The traveling time from the laser scanner to the Earth's surface and back is directly related to the distance of the sensor to the ground. When there are several objects within the travel path of the laser pulse, the reflected laser pluses are distorted by surface variation within the footprint, generating multiple echoes because each target transforms the emitted pulse. The shapes of the received waveforms also contain important information about surface roughness, slope and reflectivity. Waveform processing algorithms parameterize and model the return signal resulting from the interaction of the transmitted laser pulse with the surface. Each of the multiple targets within the footprint can be identified. Assuming each response is gaussian, returns are modeled as a mixture gaussian distribution. Then, the parameters of the model are estimated by LMS Method or EM algorithm However, each response actually shows the skewness in the right side with the slowly decaying tail. For the application to require more accurate analysis, the tail information is to be quantified by an approach to decompose the tail. One method to handle with this problem is proposed in this study.

Visualization of Korean Speech Based on the Distance of Acoustic Features (음성특징의 거리에 기반한 한국어 발음의 시각화)

  • Pok, Gou-Chol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.3
    • /
    • pp.197-205
    • /
    • 2020
  • Korean language has the characteristics that the pronunciation of phoneme units such as vowels and consonants are fixed and the pronunciation associated with a notation does not change, so that foreign learners can approach rather easily Korean language. However, when one pronounces words, phrases, or sentences, the pronunciation changes in a manner of a wide variation and complexity at the boundaries of syllables, and the association of notation and pronunciation does not hold any more. Consequently, it is very difficult for foreign learners to study Korean standard pronunciations. Despite these difficulties, it is believed that systematic analysis of pronunciation errors for Korean words is possible according to the advantageous observations that the relationship between Korean notations and pronunciations can be described as a set of firm rules without exceptions unlike other languages including English. In this paper, we propose a visualization framework which shows the differences between standard pronunciations and erratic ones as quantitative measures on the computer screen. Previous researches only show color representation and 3D graphics of speech properties, or an animated view of changing shapes of lips and mouth cavity. Moreover, the features used in the analysis are only point data such as the average of a speech range. In this study, we propose a method which can directly use the time-series data instead of using summary or distorted data. This was realized by using the deep learning-based technique which combines Self-organizing map, variational autoencoder model, and Markov model, and we achieved a superior performance enhancement compared to the method using the point-based data.

An Algorithm for Spot Addressing in Microarray using Regular Grid Structure Searching (균일 격자 구조 탐색을 이용한 마이크로어레이 반점 주소 결정 알고리즘)

  • 진희정;조환규
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.9
    • /
    • pp.514-526
    • /
    • 2004
  • Microarray is a new technique for gene expression experiment, which has gained biologist's attention for recent years. This technology enables us to obtain hundreds and thousands of expression of gene or genotype at once using microarray Since it requires manual work to analyze patterns of gene expression, we want to develop an effective and automated tools to analyze microarray image. However it is difficult to analyze DNA chip images automatically due to several problems such as the variation of spot position, the irregularity of spot shape and size, and sample contamination. Especially, one of the most difficult problems in microarray analysis is the block and spot addressing, which is performed by manual or semi automated work in all the commercial tools. In this paper we propose a new algorithm to address the position of spot and block using a new concept of regular structure grid searching. In our algorithm, first we construct maximal I-regular sequences from the set of input points. Secondly we calculate the rotational angle and unit distance. Finally, we construct I-regularity graph by allowing pseudo points and then we compute the spot/block address using this graph. Experiment results showed that our algorithm is highly robust and reliable. Supplement information is available on http://jade.cs.pusan.ac.kr/~autogrid.

Fast Delineation of the Depth to Bedrock using the GRM during the Seismic Refaction Survey in Cheongju Granite Area (굴절법 탄성파탐사 현장에서 GRM을 이용한 청주화강암지역 기반암 깊이의 신속한 추정)

  • Lee, Sun-Joong;Kim, Ji-Soo;Lee, Cheol-Hee;Moon, Yoon-Sup
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.615-623
    • /
    • 2010
  • Seismic refraction survey is a geophysical method that delineates subsurface velocity structure using direct wave and critically refracted wave. The generalized reciprocal method(GRM) is an inversion technique which uses travel-time data from several forward and reverse shots and which can provide the geometry of irregular inclined refractors and structures underlain by hidden layer such as low velocity zone and thin layer. In this study, a simple Excel-GRM routine was tested for fast mapping of the interface between weathering layer and bedrock during the survey, with employing a pair of forward and reverse shots. This routine was proved to control the maximum dip of approximately $30^{\circ}C$ and maximum velocity contrast of 0.6, based on the panel tests in terms of dipping angle and velocity contrast for the two-layer inclined models. In contrast with conventional operation of five to seven shots with sufficient offset distance and indoor data analysis thereafter, this routine was performed in the field shortly after data acquisition. Depth to the bedrock provided by Excel-GRM, during the field survey for Cheongju granite area, correlates well with the elevation of the surface of soft rock from the drill core and SPS logging data. This cost-effective routine developed for quickly delineating the bedrock surface in the field survey will be readily applicable to mapping of weathering zone in narrow zone with small variation of elevation of bedrock.