• 제목/요약/키워드: Distance parameters

검색결과 1,963건 처리시간 0.028초

Capturing Distance Parameters Using a Laser Sensor in a Stereoscopic 3D Camera Rig System

  • Chung, Wan-Young;Ilham, Julian;Kim, Jong-Jin
    • 센서학회지
    • /
    • 제22권6호
    • /
    • pp.387-392
    • /
    • 2013
  • Camera rigs for shooting 3D video are classified as manual, motorized, or fully automatic. Even in an automatic camera rig, the process of Stereoscopic 3D (S3D) video capture is very complex and time-consuming. One of the key time-consuming operations is capturing the distance parameters, which are near distance, far distance, and convergence distance. Traditionally these distances are measured by tape measure or triangular indirect measurement methods. These two methods consume a long time for every scene in shot. In our study, a compact laser distance sensing system with long range distance sensitivity is developed. The system is small enough to be installed on top of a camera and the measuring accuracy is within 2% even at a range of 50 m. The shooting time of an automatic camera rig equipped with the laser distance sensing system can be reduced significantly to less than a minute.

Damping modification factor of pseudo-acceleration spectrum considering influences of magnitude, distance and site conditions

  • Haizhong Zhang;Jia Deng;Yan-Gang Zhao
    • Earthquakes and Structures
    • /
    • 제25권5호
    • /
    • pp.325-342
    • /
    • 2023
  • The damping modification factor (DMF) is used to modify the 5%-damped response spectrum to produce spectral values that correspond to other necessary damping ratios for seismic design. The DMF has been the subject of numerous studies, and it has been discovered that seismological parameters like magnitude and distance can have an impact on it. However, DMF formulations incorporating these seismological parameters cannot be directly applied to seismic design because these parameters are not specified in the present seismic codes. The goal of this study is to develop a formulation for the DMF that can be directly applied in seismic design and that takes the effects of magnitude, distance, and site conditions into account. To achieve this goal, 16660 ground motions with magnitudes ranging from 4 to 9 and epicentral distances ranging from 10 to 200 km are used to systematically study the effects of magnitude, distance, and site conditions on the DMF. Furthermore, according to the knowledge that magnitude and distance affect the DMF primarily by changing the spectral shape, a spectral shape factor is adopted to reflect influences of magnitude and distance, and a new formulation for the DMF incorporating the spectral shape factor is developed. In comparison to the current formulations, the proposed formulation provides a more accurate prediction of the DMF and can be employed directly in seismic design.

The Influence of Source Term Release Parameters on Health Effects

  • Jeong, Jongtae;Ha, Jaejoo
    • Nuclear Engineering and Technology
    • /
    • 제31권3호
    • /
    • pp.294-302
    • /
    • 1999
  • The influence of source term release parameters on offsite health effects was examined for the YGN 3&4 nuclear power plants. The release parameters considered in this study are release height, heat content, and release time. The effects of core inventory change as a function of fuel burnup was also examined. The health effects by the change of release parameters are early fatalities, cancer fatalities, and early fatality distance. The results showed that early fatalities and early fatality distance decrease as release height increases, although it does not have significant influence on cancer fatalities. The values of both early and late health effects decrease as heat content increases. As release time increases, health consequence shows maximum value in 2 hours of release time and then decreases rapidly. As fuel burnup increases, early fatalities decrease rapidly, while cancer fatalities increase rapidly. Both cases show little variation afterward. Early fatality distance is almost same in all fuel turnup history. The information obtained through this research is very useful in developing strategies for reducing offsite consequences when combined with the influence of weather conditions on offsite risks.

  • PDF

멀티뷰 카메라를 사용한 외부 카메라 보정 (Extrinsic calibration using a multi-view camera)

  • 김기영;김세환;박종일;우운택
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 신호처리소사이어티 추계학술대회 논문집
    • /
    • pp.187-190
    • /
    • 2003
  • In this paper, we propose an extrinsic calibration method for a multi-view camera to get an optimal pose in 3D space. Conventional calibration algorithms do not guarantee the calibration accuracy at a mid/long distance because pixel errors increase as the distance between camera and pattern goes far. To compensate for the calibration errors, firstly, we apply the Tsai's algorithm to each lens so that we obtain initial extrinsic parameters Then, we estimate extrinsic parameters by using distance vectors obtained from structural cues of a multi-view camera. After we get the estimated extrinsic parameters of each lens, we carry out a non-linear optimization using the relationship between camera coordinate and world coordinate iteratively. The optimal camera parameters can be used in generating 3D panoramic virtual environment and supporting AR applications.

  • PDF

Characteristics of Supersonic Jet Impingement on a Flat Plate

  • 홍승규;이광섭;박승오
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 춘계 학술대회논문집
    • /
    • pp.134-143
    • /
    • 2001
  • Viscous solutions of supersonic jet impinging on a flat plate normal to the flow are simulated using three-dimensional Navier-Stokes solver. The jet impinging flow structure exhibits such complex nature as shock shell, plate shock and Mach disk depending on the flow parameters. Among others, the dominant parameters are the ratio of the nozzle exit pressure to the ambient pressure and the distance between the nozzle exit plane and the impinging plane. In the present study, the nozzle contour and the pressure ratio are held fixed, while the jet impinging distance is varied to illuminate the characteristics of the jet plume with the distance. As the plate is placed close to the nozzle at 3D high, the computed wall pressure at or near the jet center oscillates with large amplitude with respect to the mean value. Here D is the nozzle exit diameter. The amplitude of wall pressure fluctuations subsides as the distance increases, but the maximum pressure level at the plate is achieved when the distance is about 4D high. The frequency of the wall pressure is estimated at 6.0 kHz, 9.3 kHz, and 10.0 kHz as the impinging distance varies from 3D, 4D, to 6D, respectively.

  • PDF

원거리 물체의 3차원거리 측정시의 파라미터 보정된 거리측정시스템 (Distance measurement system compensated parameters for extraction of 3D distance)

  • 김종만;김영민;김원섭;황종선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.605-606
    • /
    • 2005
  • Depth error correction effect for maladjusted stereo cameras with calibrated pixel distance parameter is presented. Intra and extra parameters should be obtain to determine the relation between image and world coordination through experiment. One difficulty is in camera alignment for parallel installation: placing two CCD arrays in a plane. If the pixel distance parameter which is one of intra parameter is calibrated with known points, such error can be compensated in some amount. Such error compensation effect with the calibrated pixel distance parameter is demonstrated with various experimental results.

  • PDF

비초점화 영상에서 정칙화법을 이용한 깊이 및 거리 계측 (On the Measurement of the Depth and Distance from the Defocused Imagesusing the Regularization Method)

  • 차국찬;김종수
    • 전자공학회논문지B
    • /
    • 제32B권6호
    • /
    • pp.886-898
    • /
    • 1995
  • One of the ways to measure the distance in the computer vision is to use the focus and defocus. There are two methods in this way. The first method is caculating the distance from the focused images in a point (MMDFP: the method measuring the distance to the focal plane). The second method is to measure the distance from the difference of the camera parameters, in other words, the apertures of the focal planes, of two images with having the different parameters (MMDCI: the method to measure the distance by comparing two images). The problem of the existing methods in MMDFP is to decide the thresholding vaue on detecting the most optimally focused object in the defocused image. In this case, it could be solved by comparing only the error energy in 3x3 window between two images. In MMDCI, the difficulty is the influence of the deflection effect. Therefor, to minimize its influence, we utilize two differently focused images instead of different aperture images in this paper. At the first, the amount of defocusing between two images is measured through the introduction of regularization and then the distance from the camera to the objects is caculated by the new equation measuring the distance. In the results of simulation, we see the fact to be able to measure the distance from two differently defocused images, and for our approach to be robuster than the method using the different aperture in the noisy image.

  • PDF

열전달 계수 최대화를 위한 마이크로 증발기의 최적 설계 (Optimal design of a micro evaporator to maximize heat transfer coefficient)

  • 성태종;오대식;서태원;김종원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2097-2101
    • /
    • 2007
  • This paper presents an optimal design of a micro evaporator which maximizes the heat transfer coefficient. Number of gaps, spanwise distance and streamwise distance are selected as the geometric design parameters. Mass flow rate of the refrigerant is selected as the non-geometric design parameter. Temperature at the surface of the heater is measured to valuate the heat transfer coefficient. Nine experiments are conducted using $L_9(3^4)$ orthogonal array. Maximum heat transfer coefficient is 640 W/$m^2K$ at the parameters of 2 gaps, 0.2 mm spanwise distance, 1.0 mm streamwise distance and 0.72 g/s mass flow rate. Among the 3 geometric parameters, the spanwise distance is the most sensitive parameter influencing the heat transfer coefficient. We conduct a second stage of experiment to increase the heat transfer coefficient by reselecting the mass flow rate. We concluded that 0.87 g/s is the optimized flow rate for an active micro cooler resulting in a heat transfer coefficient of 651 W/$m^2K$.

  • PDF

송전선로에 UPFC연계시 거리계전기 동작특성에 관한 연구 (A Study on Distance Relay characteristics for Transmission Line with the Unified Power Flow Controller)

  • 서정남;정창호;김진오
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.220-222
    • /
    • 2001
  • This paper represents impedance calculation of the distance relay using PSCAD/EMTDC software for transmission line involving the UPFC (Unified Power Flow Controller) device, which is the most vigorous component of FACTS. The presence of the UPFC significantly affects the line parameters of transmission system, which are also influenced by the distance relay setting. Moreover depending on the UPFC location and its parameters, zones of setting the distance relay will be changed. The presence of the UPFC in the fault loop affects both voltage and current seen by relay. Therefore, the distance relay should be taken into account the variable injected voltage of the UPFC.

  • PDF

STS 304L의 Nd:YAG 레이저 용접에서 용접조건이 용접부 형상에 미치는 영향 (Effects of the Welding Parameters on the Weld Shape in Nd:YAG Laser Welding of STS 304L)

  • 이형근;석한길;한현수;박울재;홍순복
    • Journal of Welding and Joining
    • /
    • 제22권1호
    • /
    • pp.58-64
    • /
    • 2004
  • The control of the weld bead shape is important in laser welding of the small parts. The effects of laser welding parameters on the weld bead shape in the pulsed Nd:YAG laser welding of STS 304L material were investigated. Shielding gas type, flow rate, pumping voltage, pulse frequency, pulse width, focal position and overlap distance were selected as laser welding parameters. Experiments were designed and conducted using the Taguchi method which was a statistical experimental method. The weld bead width, penetration, area and aspect ratio were measured and analysed as the weld bead shape properties and the welding parameters were optimized to maximize the weld aspect ratio. Weld aspect ratio were greatly affected by the pulse width, pumping voltage and pulse frequency, and somewhat by the overlap distance, and little by the shielding gas type, flow rate and focal position. A confirmation experiment were conducted using the optimized welding parameters.