• Title/Summary/Keyword: Distance influence

Search Result 1,304, Processing Time 0.028 seconds

Face stability analysis of rock tunnels under water table using Hoek-Brown failure criterion

  • Li, T.Z.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.235-245
    • /
    • 2019
  • This paper presents a novel methodology for face stability assessment of rock tunnels under water table by combining the kinematical approach of limit analysis and numerical simulation. The tunnels considered in this paper are excavated in fractured rock masses characterized by the Hoek-Brown failure criterion. In terms of natural rock deposition, a more convincing case of depth-dependent mi, GSI, D and ${\sigma}_c$ is taken into account by proposing the horizontally layered discretization technique, which enables us to generate the failure surface of tunnel face point by point. The vertical distance between any two adjacent points is fixed, which is beneficial to deal with stability problems involving depth-dependent rock parameters. The pore water pressure is numerically computed by means of 3D steady-state flow analyses. Accordingly, the pore water pressure for each discretized point on the failure surface is obtained by interpolation. The parametric analysis is performed to show the influence of depth-dependent parameters of $m_i$, GSI, D, ${\sigma}_c$ and the variation of water table elevation on tunnel face stability. Finally, several design charts for an undisturbed tunnel are presented for quick calculations of critical support pressures against face failure.

The Effect of Cultural Dimensions on Knowledge-Sharing Intentions: Evidence from Higher Education Institutions in Jordan

  • AL HAWAMDEH, Nayel;AL QATAMIN, Ali
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.5
    • /
    • pp.1079-1089
    • /
    • 2021
  • The current study aims to examine the effect of Hofstede's dimensions of culture on the intention of sharing knowledge in higher education institutions (HEIs) in Jordan. In the literature, researchers have given limited attention to such an effect. Therefore, by adopting Hofstede's framework, the current study attempts to investigate how Jordan's cultural context impacts on the intentions to share knowledge in HEIs. This study applied quantitative research methods to investigate the effect of Hofstede's cultural dimensions on knowledge-sharing intentions. In total, 307 questionnaires were collected from employees in Jordanian universities and, then, tested using descriptive and regression analytical methods. The study results show that culture dimensions influence knowledge-sharing intention and that each dimension plays a different role in enhancing this knowledge-sharing intention. More specifically, it was found that long-term orientation, collectivism and high uncertainty avoidance had a positive effect on knowledge-sharing intention, while cultural masculinity and power distance had no negative effect. Based on these results, the study makes several recommendations, the most important of which is the promotion of cultural values that encourage intention to share knowledge. Also, more qualitative research is needed to explore in depth the effective means that encourage intentions to share different types of knowledge.

Experimental Study of Error Canceling on the Piercing Depth of Concrete by Single Shot and Barrage of Small Caliber Bullets (소구경 탄자 연발사격 시 콘크리트 관입깊이 오차 상쇄 실험 연구)

  • Lim, Chaeyeon;Kim, Kuk-Joog;Park, Young-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.35-36
    • /
    • 2019
  • Major influence factors for piercing depth of concrete against small caliber bullet are target's property such as compression strength of concrete and bullet's property such as the velocity and weight of it. In particular about the bullet's property, velocity and incidence angle could be controlled by specific position or distance between targets and shooter, but the angle of yaw of bullet dose not. Because the the angle of yaw of bullet causes lower piercing force of bullet, some errors on piercing depth of concrete could be appeared by live fire test for the evaluation of protective performance. Therefore, we have checked the error canceling effect on the piercing depth of concrete by single shot and barrage of small caiber bullets. As a result, we identified that the error of piercing depth by the angle of yaw of bullet could be cancelled by barrage.

  • PDF

An Analytical Study on the Heat Transfer Characteristics of MF Evaporation Tubes Attached with a Fin (핀이 부착된 MF증발관의 열전달 특성에 대한 해석적 연구)

  • Park, Yong-Seok;Seong, Hong-Seok;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.48-56
    • /
    • 2021
  • In this study, the heat transfer process around the finned channel tubes is numerically examined. Serially arranged tubes of an evaporator were used for heat exchange. The numerical analysis results confirmed that the vortex generated at the rear of the channel pipe was caused by the fin. Furthermore, it was also confirmed that the temperature difference was large between the inlet and outlet ends of the fin. The temperature of the location where the fin was attached to the channel pipe was found to be close to the surface temperature of the channel wall. However, the temperature rose rapidly closer to the ambient air temperature of 350 K towards the fin end, located at a distance of 0.035 m; it was found to have a significant influence on the heat transfer around the fin-attached channel tube. The wider the vertical flow path, the lower the total heat transfer coefficient. However, the overall heat transfer coefficient increased as the horizontal flow path narrowed. The increment is attributed to an increase in the heat transfer amount due to increased heat transfer surface.

Seismic and collapse analysis of a UHV transmission tower-line system under cross-fault ground motions

  • Tian, Li;Bi, Wenzhe;Liu, Juncai;Dong, Xu;Xin, Aiqiang
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.445-457
    • /
    • 2020
  • An ultra-high voltage (UHV) transmission system has the advantages of low circuitry loss, high bulk capacity and long-distance transmission capabilities over conventional transmission systems, but it is easier for this system to cross fault rupture zones and become damaged during earthquakes. This paper experimentally and numerically investigates the seismic responses and collapse failure of a UHV transmission tower-line system crossing a fault. A 1:25 reduced-scale model is constructed and tested by using shaking tables to evaluate the influence of the forward-directivity and fling-step effects on the responses of suspension-type towers. Furthermore, the collapse failure tests of the system under specific cross-fault scenarios are carried out. The corresponding finite element (FE) model is established in ABAQUS software and verified based on the Tian-Ma-Qu material model. The results reveal that the seismic responses of the transmission system under the cross-fault scenario are larger than those under the near-fault scenario, and the permanent ground displacements in the fling-step ground motions tend to magnify the seismic responses of the fault-crossing transmission system. The critical collapse peak ground acceleration (PGA), failure mode and weak position determined by the model experiment and numerical simulation are in relatively good agreement. The sequential failure of the members in Segments 4 and 5 leads to the collapse of the entire model, whereas other segments basically remain in the intact state.

Estimating United States-Asia Clothing Trade: Multiple Regression vs. Artificial Neural Networks

  • CHAN, Eve M.H.;HO, Danny C.K.;TSANG, C.W.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.7
    • /
    • pp.403-411
    • /
    • 2021
  • This study discusses the influence of economic factors on the clothing exports from China and 15 South and Southeast Asian countries to the United States. A basic gravity trade model with three predictors, including the GDP value produced by exporting and importing countries and their geographical distance was established to explain the bilateral trade patterns. The conventional approach of multiple regression and the novel approach of Artificial Neural Networks (ANNs) were developed based on the value of clothing exports from 2012 to 2018 and applied to the trade pattern prediction of 2019. The results showed that ANNs can achieve a more accurate prediction in bilateral trade patterns than the commonly-used econometric analysis of the basic gravity trade model. Future studies can examine the predictive power of ANNs on an extended gravity model of trade that includes explanatory variables in social and environmental areas, such as policy, initiative, agreement, and infrastructure for trade facilitation, which are crucial for policymaking and managerial consideration. More research should be conducted for the examination of the balance between developing countries' economic growth and their social and environmental sustainability and for the application of more advanced machine-learning algorithms of global trade flow examination.

Research on a Method for the Optical Measurement of the Rifling Angle of Artillery Based on Angle Error Correction

  • Zhang, Ye;Zheng, Yang
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.500-508
    • /
    • 2020
  • The rifling angle of artillery is an important parameter, and its determination plays a key role in the stability, hit rate, accuracy and service life of artillery. In this study, we propose an optical measurement method for the rifling angle based on angle error correction. The method is based on the principle of geometrical optics imaging, where the rifling on the inner wall of the artillery barrel is imaged on a CCD camera target surface by an optical system. When the measurement system moves in the barrel, the rifling image rotates accordingly. According to the relationship between the rotation angle of the rifling image and the travel distance of the measurement system, different types of rifling equations are established. Solving equations of the rifling angle are deduced according to the definition of the rifling angle. Furthermore, we added an angle error correction function to the method that is based on the theory of dynamic optics. This function can measure and correct the angle error caused by the posture change of the measurement system. Thus, the rifling angle measurement accuracy is effectively improved. Finally, we simulated and analyzed the influence of parameter changes of the measurement system on rifling angle measurement accuracy. The simulation results show that the rifling angle measurement method has high measurement accuracy, and the method can be applied to different types of rifling angle measurements. The method provides the theoretical basis for the development of a high-precision rifling measurement system in the future.

Comparison of Wear Amount of Surface Coating Layers on Dies for Cold-Stamped Products with MART1470 (MART1470 판재 냉간 프레스 성형용 금형 코팅층의 마모량 비교)

  • Son, M.K.;Kim, S.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.1
    • /
    • pp.11-16
    • /
    • 2022
  • In this paper, wear characteristics of PVD coatings were compared on the die surface for cold stamping of MART1470 steel sheet with the finite element analysis and the pin-on-disc wear test. Three types of PVD coatings (CrN, TiAlCrN, and MoS2TiCr(W)N) were considered for the tool surface made of STD11 material. The stamping process of an auto-body part was analyzed with the finite element method. Ranges of process variables for the wear test such as contact pressure, relative speed, and sliding distance were predicted from analysis results. In order to quantitatively analyze wear characteristics of each coating, the amount of wear was measured and compared according to process variables with the pin-on-disc wear test. The influence of each process variable was investigated and the wear characteristics of the three coating layers were quantitatively compared. It was confirmed that the wear characteristics of MoS2TiCr(W)N coating were better than those of CrN and TiAlCrN. It was noted that the proposed prediction approach could predict and respond to the wear phenomenon occurring in the stamping process.

Possibility of Spreading Infectious Diseases by Droplets Generated from Semiconductor Fabrication Process (반도체 FAB의 비말에 의한 감염병 전파 가능성 연구)

  • Oh, Kun-Hwan;Kim, Ki-Youn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.2
    • /
    • pp.111-115
    • /
    • 2022
  • Objectives: The purpose of this study is to verify whether droplet-induced propagation, the main route of infectious diseases such as COVID-19, can occur in semiconductor FAB (Fabrication), based on research results on general droplet propagation. Methods: Through data surveys droplet propagation was modeled through simulation and experimental case analysis according to general (without mask) and mask-wearing conditions, and the risk of droplet propagation was inferred by reflecting semiconductor FAB operation conditions (air current, air conditioning system, humidity, filter conditions). Results: Based on the results investigated to predict the possibility of spreading infectious diseases in semiconductor FAB, the total amount of droplet propagation (concentration), propagation distance, and virus life in FAB were inferred by reflecting the management parameter of semiconductor FAB. Conclusions: The total amount(concentration) of droplet propagation in the semiconductor fab is most affected by the presence or absence of wearing a mask and the line air dilution rate has some influence. when worn it spreads within 0.35~1m, and since the humidity is constant the virus can survive in the air for up to 3 hours. as a result the semiconductor fab is judged to be and effective space to block virus propagation due to the special environmental condition of a clean room.

Simulation study on porosity disturbance of ultra-large-diameter jet borehole excavation based on water jet coal wetting and softening model

  • Guo, Yan L.;Liu, Hai B.;Chen, Jian;Guo, Li W.;Li, Hao M.
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.153-167
    • /
    • 2022
  • This study proposes a method to analyze the distribution of coal porosity disturbances after the excavation of ultra-large-diameter water jet boreholes using a coal wetting and softening model. The high-pressure jet is regarded as a short-term high-pressure water injection process. The water injection range is the coal softening range. The time when the reference point of the borehole wall is shocked by the high-pressure water column is equivalent to the time of high-pressure water injection of the coal wall. The influence of roadway excavation with support and borehole diameter on the ultra-large-diameter jet drilling excavation is also studied. The coal core around the borehole is used to measure the gas permeability for determining the porosity disturbance distribution of the coal in the sampling plane to verify the correctness of the simulation results. Results show that the excavation borehole is beneficial to the expansion of the roadway excavation disturbance, and the expansion distance of the roadway excavation disturbance has a quadratic relationship with the borehole diameter. Wetting and softening of the coal around the borehole wall will promote the uniform distribution of the overall porosity disturbance and reduce the amplitude of disturbance fluctuations.