• Title/Summary/Keyword: Distance errors

Search Result 683, Processing Time 0.03 seconds

Performance Analysis of Three-Dimensional Radar for Angle and Distance Errors (3차원 레이다 궤적 생성 및 성능 분석)

  • Lim, Hyeongyong;Jang, Yeonsoo;Lee, Taewoo;Hwang, Jaeduck;Yoon, Dongweon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.837-839
    • /
    • 2014
  • In radar systems, information of three-dimensional (3D) trajectory is necessary for tracking targets. The information of 3D trajectory for a 3D radar can be obtained by estimating the azimuth angle, the elevation angle, and the distance. The estimated information of the angles and the distance has errors according to received signals. Since these errors affect performances of 3D radar systems, performance analysis of 3D radar for the angles and the distance errors is required. In this paper, the performance of 3D radar systems is analyzed by root mean square error (RMSE) between true trajectory information and the estimated trajectory information according to the angles and the distance errors.

  • PDF

Quantile regression with errors in variables

  • Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.2
    • /
    • pp.439-446
    • /
    • 2014
  • Quantile regression models with errors in variables have received a great deal of attention in the social and natural sciences. Some eorts have been devoted to develop eective estimation methods for such quantile regression models. In this paper we propose an orthogonal distance quantile regression model that eectively considers the errors on both input and response variables. The performance of the proposed method is evaluated through simulation studies.

Distance Geometry-based Wireless Location Algorithms in Cellular Networks with NLOS Errors

  • Zhao, Junhui;Zhang, Hao;Ran, Rong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2132-2143
    • /
    • 2015
  • This paper presents two distance geometry-based algorithms for wireless location in cellular network systems-distance geometry filtering (DGF) and distance geometry constraint (DGC). With time-of-arrival range measurements, the DGF algorithm estimates the mobile station position by selecting a set of measurements with relatively small NLOS (non-line-of-sight) errors, and the DGC algorithm optimizes the measurements first and then estimates the position using those optimized measurements. Simulation results show that the proposed algorithms can mitigate the impact of NLOS errors and effectively improve the accuracy of wireless location.

Distance estimation from ground for small VTOL UAV landing (소형 VTOL UAV 이착륙을 위한 지면과의 거리 추정)

  • Yun, Byoung-Min;Kim, Sang-Won;Cho, Sun-Ho;Park, Chong-Kug
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.59-61
    • /
    • 2004
  • For automatic landing of small VTOL UAV, it is necessary to calculate the distance from the UAV and the ground. The distance can be generally measured by a ultra-sonic sensor, but the ultra-sonic sensor has errors according to velocity of a sensor board. To compensate these errors, we proposed a sensor fusion method using a Kalman filter.

  • PDF

Clinical problems of computer-guided implant surgery

  • Moon, Seong-Yong;Lee, Kyoung-Rok;Kim, Su-Gwan;Son, Mee-Kyoung
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.15.1-15.6
    • /
    • 2016
  • Background: The utilization of a cone-beam computed tomography (CT)-assisted surgical template allows for predictable results because implant placement plans can be performed in the actual surgery. In order to assess the accuracy of the CT-guided surgery, angular errors and shoulder/apex distance errors were evaluated by data fusion from before and after the placement. Methods: Computer-guided implant surgery was performed in five patients with 19 implants. In order to analyze differences of the implant fixture body between preoperative planned implant and postoperative placed implant, angular error and distance errors were evaluated. Results: The mean angular errors between the preoperative planned and postoperative placed implant was $3.84^{\circ}{\pm}1.49^{\circ}$; the mean distance errors between the planned and placed implants were $0.45{\pm}0.48mm$ horizontally and $0.63{\pm}0.51mm$ vertically at the implant neck and $0.70{\pm}0.63mm$ horizontally and $0.64{\pm}0.57mm$ vertically at the implant apex for all 19 implants. Conclusions: It is important to be able to utilize these methods in actual clinical settings by improving the various problems, including the considerations of patient mouth opening limitations, surgical guide preparation, and fixation.

Reliability Analysis of Interleaved Memory with a Scrubbing Technique (인터리빙 구조를 갖는 메모리의 스크러빙 기법 적용에 따른 신뢰도 해석)

  • Ryu, Sang-Moon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.443-448
    • /
    • 2014
  • Soft errors in memory devices that caused by radiation are the main threat from a reliability point of view. This threat can be commonly overcome with the combination of SEC (Single-Error Correction) codes and scrubbing technique. The interleaving architecture can give memory devices the ability of tolerating these soft errors, especially against multiple-bit soft errors. And the interleaving distance plays a key role in building the tolerance against multiple-bit soft errors. This paper proposes a reliability model of an interleaved memory device which suffers from multiple-bit soft errors and are protected by a combination of SEC code and scrubbing. The proposed model shows how the interleaving distance works to improve the reliability and can be used to make a decision in determining optimal scrubbing technique to meet the demands in reliability.

Ranging the Distance Between Wireless Sensor Nodes Using the Deviation Correction Method of Received Signal Strength (수신신호세기의 편차 보정법을 이용한 무선센서노드 간의 거리 추정)

  • Lee, Jin-Young;Kim, Jung-Gyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.2
    • /
    • pp.71-78
    • /
    • 2012
  • Based on the Zigbee-based wireless sensor network, I suggest the way to reduce errors between the short distance, improving the accuracy of the presumed distance by revising the deviation of RSSI(Received Signal Strength Indication) values is to estimate the distance using only the RF signal power without the additional hardware. In general, the graph measured by RSSI values shows the proximity values which are ideally reduced in proportion to the distance under the free outdoor space in which LOS(Line-Of-Sight) is guaranteed. However, if the result of the received RSSI values are each substituted to the formula, it can produce a larger margin of error and less accurate measurement since it is based upon the premise that this free space is not affected by reflected waves or obstacles caused by the ground and electronic jamming engendered by the environment. Therefore, the purpose of this study is to reduce the margin of errors between the distances and to measure the proximity values with the ideal type of graph by suggesting the way to revise the received RSSI values in the light of these reflected waves or obstacles and the electronic jamming. In conclusion, this study proves that errors are reduced by comparing the proposed deviation correction method to the revised RSSI value.

Prevalence of dental implant positioning errors: A cross-sectional study

  • Gabriel, Rizzo;Mayara Colpo, Prado;Lilian, Rigo
    • Imaging Science in Dentistry
    • /
    • v.52 no.4
    • /
    • pp.343-350
    • /
    • 2022
  • Purpose: This study evaluated the prevalence of dental implant positioning errors and the most frequently affected oral regions. Materials and Methods: A sample was obtained of CBCT images of 590 dental implants from 230 individuals who underwent diagnosis at a radiology center using cone-beam computed tomography from 2017 to 2020. The following variables were considered: thread exposure, violation of the minimum distance between 2 adjacent implants and between the implant and tooth, and implant contact with anatomical structures. Descriptive data analysis and the Pearson chi-square test(P<0.05) were performed to compare findings according to mouth regions. Results: Most (74.4%) of the 590 implants were poorly positioned, with the posterior region of the maxilla being the region most frequently affected by errors. Among the variables analyzed, the most prevalent was thread exposure (54.7%), followed by implant contact with anatomical structures, violation of the recommended distance between 2 implants and violation of the recommended distance between the implant and teeth. Thread exposure was significantly associated with the anterior region of the mandible (P<0.05). The anterior region of the maxilla was associated with violation of the recommended tooth-implant distance (P<0.05) and the recommended distance between 2 adjacent implants(P<0.05). Implant contact with anatomical structures was significantly more likely to occur in the posterior region of the maxilla (P<0.05). Conclusion: Many implants were poorly positioned in the posterior region of the maxilla. Thread exposure was particularly frequent and was significantly associated with the anterior region of the mandible.

A Stereo-Vision System for 3D Position Recognition of Cow Teats on Robot Milking System (로봇 착유시스템의 3차원 유두위치인식을 위한 스테레오비젼 시스템)

  • Kim, Woong;Min, Byeong-Ro;Lee, Dea-Weon
    • Journal of Biosystems Engineering
    • /
    • v.32 no.1 s.120
    • /
    • pp.44-49
    • /
    • 2007
  • A stereo vision system was developed for robot milking system (RMS) using two monochromatic cameras. An algorithm for inverse perspective transformation was developed for the 3-D information acquisition of all teats. To verify performance of the algorithm in the stereo vision system, indoor tests were carried out using a test-board and model teats. A real cow and a model cow were used to measure distance errors. The maximum distance errors of test-board, model teats and real teats were 0.5 mm, 4.9 mm and 6 mm, respectively. The average distance errors of model teats and real teats were 2.9 mm and 4.43 mm, respectively. Therefore, it was concluded that this algorithm was sufficient for the RMS to be applied.

Structure analysis and signal process to improve distance measuring accuracy of 3D laser scanner (3차원 레이저스캐너의 거리측정 정밀도 향상을 위한 시스템의 구조분석과 신호처리)

  • Oh, Dong-Geun;Yoo, Hyun-Kuk;Kim, Ho-Seop
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.245-247
    • /
    • 2010
  • This research presents both system structure analysis to improve performance of 3D laser scanner, which has time of flight method, and scheme to minimize distance measurement errors during signal process. With the help of reference source, we minimized the instability of electronic signal processing time and possibility of distance measurement errors. Furthermore, it helps easy alignment and accuracy of system by using fiber delay line and coupler.

  • PDF