• Title/Summary/Keyword: Distance Sensors

Search Result 782, Processing Time 0.027 seconds

Location Estimation and Navigation of Mobile Robots using Wireless Sensor Network and Ultrasonic Sensors (무선 센서 네트워크와 초음파 센서를 이용한 이동로봇의 위치 인식과 주행)

  • Chun, Chang-Hee;Park, Jong-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1692-1698
    • /
    • 2010
  • In this paper we use wireless sensor network and ultrasonic sensors to estimate local position of mobile robots, and to navigate it. Ultra sonic sensor is simple and accurate so it is good to use in local estimation and navigation of mobile robots. But to obtain accurate distance of two sensors they need to face each others as possible as they can. To solve this problem we rotate ultra sonic sensor which is attached to robot in 360 degrees and obtain accurate distance. We can estimate precise position of mobile robot by triangulation using obtained distance information. A mobile robot navigates using embedded encoder and compensates its coordinates by ultrasonic sensors. Results of Experiments show proposed method obtains accurate distance between sensors and coordinates of position of robot. And mobile robots can navigate designated path well.

Pedestrian Detection Using Ultrasonic Distance Sensors Based on Virtual Driving Environments (가상주행환경 기반 초음파 센서의 승합차 측면 보행자 인식)

  • Yoon, Hyun-cheol;Choi, Ju Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.309-316
    • /
    • 2017
  • In shuttle vans designed to transport children, the recognition of a child's approach and departure is very important. Ultrasonic sensors are generally used for a short distance around a vehicle. Although ultrasonic sensors are cheaper than other ADAS sensors, the number of sensors installed in a van should be optimized. In order to recognize the presence of a child around a shuttle van, this paper proposes the placement of ultrasonic sensors in the van. Considering the turning radius of the van and the distance from each sensor to a child, collision risk is classified as 'safe', 'warning', and 'danger'. The sensor placement and the recognition algorithm are verified in a virtual driving environment.

The Evaluation of Communication Distance Using Wireless MEMS Sensor in Building Structure (건축구조물에서 무선 MEMS 센서를 이용한 통신 거리 유효성 평가)

  • Lee, Jong-Ho;Cheon, Dong-Jin;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.93-102
    • /
    • 2017
  • Wireless MEMS sensors have common features such as wireless communication, data measurement, embedded processing, battery-based self-power, and low cost, and increased measurement effectiveness. Wireless MEMS sensors enable efficient SHM without interfering with location because there is no requirement for triboelectric noise and cumbersome cables. However, there is little research on the communication distance with sensors and data. For instance, existing researches have limited communication distance experiments in civil engineering bridges. It is also necessary to investigate the characteristics of dynamic behavior and the communication distance of architectural structures with different wireless transmission/reception environments. Therefore, in a building structure with walls and slabs instead of open spaces, MEMS sensors and data loggers were used as distance experiments where communication disturbance between the vertical slab and the horizontal wall could actually be communicated.

Interference Elimination Method of Ultrasonic Sensors Using K-Nearest Neighbor Algorithm (KNN 알고리즘을 활용한 초음파 센서 간 간섭 제거 기법)

  • Im, Hyungchul;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.169-175
    • /
    • 2022
  • This paper introduces an interference elimination method using k-nearest neighbor (KNN) algorithm for precise distance estimation by reducing interference between ultrasonic sensors. Conventional methods compare current distance measurement result with previous distance measurement results. If the difference exceeds some thresholds, conventional methods recognize them as interference and exclude them, but they often suffer from imprecise distance prediction. KNN algorithm classifies input values measured by multiple ultrasonic sensors and predicts high accuracy outputs. Experiments of distance measurements are conducted where interference frequently occurs by multiple ultrasound sensors of same type, and the results show that KNN algorithm significantly reduce distance prediction errors. Also the results show that the prediction performance of KNN algorithm is superior to conventional voting methods.

Control for Mobile Robot be based on the Ultrasonic sensors and DSP Image Processing (DSP 영상 처리와 초음파 센서를 기반으로 한 이동 로봇 제어)

  • 김용준;문철용
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.255-258
    • /
    • 2000
  • This thesis shows controlling the mobile robot with distance information gotten with ultrasonic sensors, and analysis of captured image. The ultrasonic sensors supplies more accurate distance data in limited area but shows unstable data unlimited area while image data generally shows stable data, but this requires so much time because of amounts of calculation. So this thesis considers the merits of ultrasonic sensors and image to implement robot system .

  • PDF

Removal Method of Signal Interference between Ultrasound Sensors (초음파 센서 간 신호 간섭 제거 방법)

  • Im, Hyungchul;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.584-590
    • /
    • 2021
  • This paper proposes a removal method of signal interference between ultrasound sensors where ghost signals due to interference are excluded and correct signal is recognized in distance mensurement using ultrasound sensors. The proposed method detects and excludes ghost signals when previous measured distance is compared to current measured distance and the distance difference exceeds a threshold. The threshold is fixed in conventional methods, so ghost signals cannot be correctly excluded when ultrasound sensor or target object move rapidly. On the contrary, to improve accuracy, the threshold is not fixed in the proposed method, and the threshold is adpatively determined based on the relative velocity when ultrasound sensor or target object move. Experiments of distance measurement with ultrasound signal interference are carried out where multiple ultrasound sensors of same type are exploited with maximum interference, and the results show that the proposed method efficiently exclude ghost signals.

Fuzzy Distance Estimation for a Fish Robot

  • Shin, Daejung;Na, Seung-You;Kim, Jin-Young
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.316-321
    • /
    • 2005
  • We designed and implemented fish robots for various purposes such as autonomous navigation, maneuverability control, posture balancing and improvement of quick turns in a tank of 120 X 120 X 180cm size. Typically, fish robots have 30-50 X 15-25 X 10-20cm dimensions; length, width and height, respectively. It is essential to have the ability of quick and smooth turning to avoid collision with obstacles or walls of the water pool at a close distance. Infrared distance sensors are used to detect obstacles, magneto-resistive sensors are used to read direction information, and a two-axis accelerometer is mounted to compensate output of direction sensors. Because of the swing action of its head due to the tail fin movement, the outputs of an infrared distance sensor contain a huge amount of noise around true distances. With the information from accelerometers and e-compass, much improved distance data can be obtained by fuzzy logic based estimation. Successful swimming and smooth turns without collision demonstrated the effectiveness of the distance estimation.

Geometry-Based Sensor Selection for Large Wireless Sensor Networks

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.1
    • /
    • pp.8-13
    • /
    • 2014
  • We consider the sensor selection problem in large sensor networks where the goal is to find the best set of sensors that maximizes application objectives. Since sensor selection typically involves a large number of sensors, a low complexity should be maintained for practical applications. We propose a geometry-based sensor selection algorithm that utilizes only the information of sensor locations. In particular, by observing that sensors clustered together tend to have redundant information, we theorize that the redundancy is inversely proportional to the distance between sensors and seek to minimize this redundancy by searching for a set of sensors with the maximum average distance. To further reduce the computational complexity, we perform an iterative sequential search without losing optimality. We apply the proposed algorithm to an acoustic sensor network for source localization, and demonstrate using simulations that the proposed algorithm yields significant improvements in the localization performance with respect to the randomly generated sets of sensors.

A Study on the Object Angle Inference in a Sonar Sensor Array System (초음파센서 배열 시스템에서 물체의 각도 추론에 관한 연구)

  • 나승유;박민상
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.271-274
    • /
    • 1998
  • Ultrasonic sensors are becoming indispensable components in every sector of automation equipments due to many advantages. But the main purposes of the noncontact sensing device are rather narrowly confined within object detection and distance measurement. To widen the realm of the applications to object recognition, ultrasonic sensors need to improve the recognition resolution to a certain amount. To resolve the problem of spatial resolution restriction, an increased number of the sensors in the forms of a linear array or 2-dimensional array of the sensor has been used. Also better resolution has been obtained by shifting the array in several steps using mechanical actuators. For an object recognition using ultrasonic sensors, measurements of distance, shift, oblique angle in certain ranges should be obtained. But a little attention has been paid to the measurement of angles. In this paper we propose a practical method for an object angular value detection in addition to distance measurement in ultrasonic sensor array system with little additional hardware burden. Using the established measurement look-up table for the variations of distance, shift, angle and transmitter voltages for each sensor characteristics, a set of different return echo signals for adjacent receivers are processed to provide enhanced angular value reading for an object.

  • PDF

Evaluation of Effective Sensing Distance and Measurement Efficiency for Ground-Based Remote Sensors with Different Leaf Distribution in Tobacco Plant (연초의 엽위 분포형태에 따른 지상 원격센서의 유효 탐사거리와 측정 효율성 평가)

  • Jeong, Hyun-Cheol;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.2
    • /
    • pp.126-136
    • /
    • 2008
  • Tobacco plants grown in pots by sand culture for 70 days after transplanting were used to evaluate the sensing distance and measurement efficiency of ground-based remote sensors. The leaf distribution of tobacco plant and sensing distance from the sensors to the target leaves were controlled by two removal methods of leaves, top-down and bottom-up removal. In the case of top-down removal, the canopy reflectance was measured by the sensor located at a fixed position having an optimum distance from the detector to the uppermost leaf of tobacco every time that the higher leaves were one at a time. The measurement of bottom-up removal, a the other hand, was conducted in the same manner as that of the top-down removal except that the lower leaves were removed one by one. Canopy reflectance measurements were made with hand held spectral sensors including the active sensors such as $GreenSeeker^{TM}$ red and green, $Crop\;Circle\;ACS-210^{TM}$ red and amber, the passive sensors of $Crop\:Circle^{TM}$, and spectroradiometer $SD2000^{TM}$. The reflectance indices by all sensors were generally affected by the upper canopy condition rather than lower canopy condition of tobacco regardless of sensor type, passive or active. The reflectance measurement by $GreenSeeker^{TM}$ was affected sensitively at measurement distance longer than 120 cm, the upper limit of effective sensing distance, beyond which measurement errors are appreciable. In case of the passive sensors that has no upper limit of effective distance and $Crop\;Circle^{TM}(ACS210)$ that has the upper limit of effective sensing distance specified with 213 cm, longer than that of estimated distance, the measurement efficiency affected by the sensing distance showed no difference. This result suggests that it is necessary to use the sensor specified optimum distance. The result revealed that active sensors are more superior than their passive counterparts in establishing between the relative ratio of reflectance index and the dry weight of tobacco treated by top-down removal, and in the evaluation of biomass. $The\;Crop\;Circle\;ACS-210^{TM}$ red was proved to have the highest efficiency of measurement, followed by $Crop\;Circle^{TM}(ACS210)$ amber and $GreenSeeker^{TM}$ red, $Crop\;Circle^{TM}$ passive, $GreenSeeker^{TM}$ green, and spectroradiometer, in descending order.