• Title/Summary/Keyword: Distance Sensor

검색결과 1,633건 처리시간 0.033초

이중센서를 이용한 코팅막 두께 측정 가능성 평가 (Measurement Feasibility Assessment of Coating Film Thickness using Dual Sensor)

  • 김주현;김성렬;김정욱;김화영;안중환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.78-81
    • /
    • 2004
  • A technical performance of the coating depends greatly on the thickness of painting film or coating film. Therefore the confirmed report of the technique to measure accurately is essential to the coating film thickness for the assessment about a coating quality performance. In this paper, two gap sensors - eddy current gap sensor and capacitance gap sensor - which has a different operating principle were used to measure the thickness of a nonmagnetic substance coating film such as paint, enamel or ceramic that was coated on the metallic material. A capacitance gap sensor was used to measure the distance between the sensor head and a coating film and an eddy current gap sensor to measure the distance between the sensor head and a base metal. Then the thickness of a coating film was obtained by the difference of two measurement value. At this result, the suggested dual sensor can measure an arbitrary film thickness to be coated on a base metal as the measurement value of coating thickness exists accurately within the 2% error.

  • PDF

온도 모니터링을 위한 광섬유 센서와 온도센서 배열 케이블의 비교 연구 (A Study on the Comparison between an Optical Fiber and a Thermal Sensor Cable for Temperature Monitoring)

  • 김중열;김유성;송윤호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1100-1109
    • /
    • 2006
  • In this study, two different technologies which can measure temperature simultaneously at many points are introduced. One is to use a thermal sensor cable that is comprised of addressable thermal sensors connected in parallel within a single cable. The other is to use an optic fiber with Distributed Temperature Sensing (DTS) system. The difference between two technologies can be summarized as follows. A thermal sensor cable has a concept of 'point sensing' that can measure temperature at accurate position of a thermal sensor. So the accuracy and resolution of temperature measurement are up to the ability of the thermal sensor. Whereas optic fiber sensor has a concept of 'distributed sensing' because temperature is measured by ratio of Stokes and anti-Stokes component intensities of Raman backscatter that is generated when laser pulse travels along an optic fiber. It's resolution is determined by measuring distance, measuring time and spatial resolution. The purpose of this study is that application targets of two temperature measurement techniques are checked in technical and economical phases by examining the strength and weakness of them. Considering the functions and characteristics of two techniques, the thermal sensor cable will be suitable to apply to the assessment of groundwater flow, geothermal distribution and grouting efficiency within 300m distance. It is expected that the optic fiber sensor can be widely utilized at various fields (for example: pipe line inspection, tunnel fire detection, power line monitoring etc.) which need an information of temperature distribution over relatively long distance.

  • PDF

초음파 무선 센서노드를 이용한 실시간 위치 추적 시스템 (Real-time Location Tracking System Using Ultrasonic Wireless Sensor Nodes)

  • 박종현;추영열
    • 제어로봇시스템학회논문지
    • /
    • 제13권7호
    • /
    • pp.711-717
    • /
    • 2007
  • Location information will become increasingly important for future Pervasive Computing applications. Location tracking system of a moving device can be classified into two types of architectures: an active mobile architecture and a passive mobile architecture. In the former, a mobile device actively transmits signals for estimating distances to listeners. In the latter, a mobile device listens signals from beacons passively. Although the passive architecture such as Cricket location system is inexpensive, easy to set up, and safe, it is less precise than the active one. In this paper, we present a passive location system using Cricket Mote sensors which use RF and ultrasonic signals to estimate distances. In order to improve accuracy of the passive system, the transmission speed of ultrasound was compensated according to air temperature at the moment. Upper and lower bounds of a distance estimation were set up through measuring minimum and maximum distances that ultrasonic signal can reach to. Distance estimations beyond the upper and the lower bounds were filtered off as errors in our scheme. With collecting distance estimation data at various locations and comparing each distance estimation with real distance respectively, we proposed an equation to compensate the deviation at each point. Equations for proposed algorithm were derived to calculate relative coordinates of a moving device. At indoor and outdoor tests, average location error and average location tracking period were 3.5 cm and 0.5 second, respectively, which outperformed Cricket location system of MIT.

초음파 센서 간 신호 간섭 제거 방법 (Removal Method of Signal Interference between Ultrasound Sensors)

  • 임형철;이성수
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.584-590
    • /
    • 2021
  • 본 논문에서는 초음파 센서로 거리를 측정할 때 간섭에 의해 발생하는 유령 신호를 배제하고 올바른 신호를 인식하는 초음파 센서 간 신호 간섭 제거 방안을 제시한다. 제안하는 기법에서는 이전 거리 측정 값과 현재 거리 측정 값을 비교하여 거리의 변화가 한계값을 벗어나면 유령 신호로 인식하고 배제한다. 기존 기법에서는 한계값이 고정되어 있어서 초음파 센서나 대상 물체가 급격하게 움직일 경우 유령 신호를 제대로 배제하기 어렵지만, 제안하는 기법에서는 한계값을 고정하지 않고 초음파 센서나 대상 물체가 움직일 경우 상대 속도에 따라 한계값을 적응적으로 결정하는 알고리즘을 사용하여 정확도를 높인다. 초음파 센서로 물체까지의 거리를 측정할 때 간섭이 가장 잘 일어나는 동종의 초음파 센서를 다수 사용하여 간섭 신호를 발생시키는 실험을 진행하였고 제안하는 기법이 효과적으로 유령 신호를 배제하는 것을 확인하였다.

Optimal sensor placement for bridge damage detection using deflection influence line

  • Liu, Chengyin;Teng, Jun;Peng, Zhen
    • Smart Structures and Systems
    • /
    • 제25권2호
    • /
    • pp.169-181
    • /
    • 2020
  • Sensor placement is a crucial aspect of bridge health monitoring (BHM) dedicated to accurately estimate and locate structural damages. In addressing this goal, a sensor placement framework based on the deflection influence line (DIL) analysis is here proposed, for the optimal design of damage detection-oriented BHM system. In order to improve damage detection accuracy, we explore the change of global stiffness matrix, damage coefficient matrix and DIL vector caused by structural damage, and thus develop a novel sensor placement framework based on the Fisher information matrix. Our approach seeks to determine the contribution of each sensing node to damage detection, and adopts a distance correction coefficient to eliminate the information redundancy among sensors. The proposed damage detection-oriented optimal sensor placement (OSP) method is verified by two examples: (1) a numerically simulated three-span continuous beam, and (2) the Pinghu bridge which has existing real damage conditions. These two examples verify the performance of the distance corrected damage sensitivity of influence line (DSIL) method in significantly higher contribution to damage detection and lower information redundancy, and demonstrate the proposed OSP framework can be potentially employed in BHM practices.

A Component-Based Localization Algorithm for Sparse Sensor Networks Combining Angle and Distance Information

  • Zhang, Shigeng;Yan, Shuping;Hu, Weitao;Wang, Jianxin;Guo, Kehua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권3호
    • /
    • pp.1014-1034
    • /
    • 2015
  • Location information of sensor nodes plays a critical role in many wireless sensor network (WSN) applications and protocols. Although many localization algorithms have been proposed in recent years, they usually target at dense networks and perform poorly in sparse networks. In this paper, we propose two component-based localization algorithms that can localize many more nodes in sparse networks than the state-of-the-art solution. We first develop the Basic Common nodes-based Localization Algorithm, namely BCLA, which uses both common nodes and measured distances between adjacent components to merge components. BCLA outperforms CALL, the state-of-the-art component-based localization algorithm that uses only distance measurements to merge components. In order to further improve the performance of BCLA, we further exploit the angular information among nodes to merge components, and propose the Component-based Localization with Angle and Distance information algorithm, namely CLAD. We prove the merging conditions for BCLA and CLAD, and evaluate their performance through extensive simulations. Simulations results show that, CLAD can locate more than 90 percent of nodes in a sparse network with average node degree 7.5, while CALL can locate only 78 percent of nodes in the same scenario.

기준전극의 형상과 입력전극사이의 간격을 고려한 건식형 표면 근전위 센서 개발 (Development of Dry-type Surface Myoelectric Sensor for the Shape of the Reference Electrode and the Inter-Electrode Distance)

  • 최기원;최규하
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권12호
    • /
    • pp.550-557
    • /
    • 2006
  • This paper proposes a dry-type surface myoelectric sensor for the myoelectric hand prosthesis. The designed surface myoelectric sensor is composed of skin interface and processing circuits. The skin interface has one reference and two input electrodes, and the reference electrode is located in the center of two input electrodes. In this paper is proposed two types of sensors with the circle- and bar-shaped reference electrode, but all input electrodes are the bar-shaped. The metal material of the electrodes is the stainless steel (SUS440) that endures sweat and wet conditions. Considering the conduction velocity and the median frequency of the myoelectric signal, the inter-electrode distance (IED) between two input electrodes as 18mm, 20mm, and 22mm is selected. The signal processing circuit consists of a differential amplifier with a band pass filter, a band rejection filter for rejecting 60Hz power-line noise, amplifiers, and a mean absolute value(MAV) circuit. Using SUS440, six prototype skin interface with different reference electrode shape and IED is fabricated, and their output characteristics are evaluated by output signal obtained from the forearm of a healthy subject. The experimental results show that the skin interface with parallel bar shape and the 18mm IED has a good output characteristics. The fabricated dry-type surface myoelectric sensor is evaluated for the upper-limb amputee.

무선 센서네트워크에서의 통계적 방법에 의한 실내 RSSI 측정 (Indoor RSSI Characterization using Statistical Methods in Wireless Sensor Network)

  • 푸촨친;정완영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 추계종합학술대회
    • /
    • pp.457-461
    • /
    • 2007
  • In many applications, received signal strength indicator is used for location tracking and sensor nodes localization. For location finding, the distances between sensor nodes can be estimated by converting received signal's power into distance using path loss prediction model. Many researches have done the analysis of power-distance relationship for radio channel characterization. In indoor environment, the general conclusion is the non-linear variation of RSSI values as distance varied linearly. This has been one of the difficulties for indoor localization. This paper presents works on indoor RSSI characterization based on statistical methods to find the overall trend of RSSI variation at different places and times within the same room From experiments, it has been shown that the variation of RSSI values can be determined by both spatial and temporal factors. This two factors are directly indicated by the two main parameters of path loss prediction model. The results show that all sensor nodes which are located at different places share the same characterization value for the temporal parameter whereas different values for the spatial parameters. Using this relationship, the characterization for location estimation can be more efficient and accurate.

  • PDF

해양 센서네트워크에서 Scheduled Interest Table(SIT) 기반 다중경로 설정 기법 (Scheduled Interest Table(SIT) based Multiple Path Configuration Technique in Ocean Sensor Network)

  • 윤남열;남궁정일;박수현
    • 한국시뮬레이션학회논문지
    • /
    • 제18권4호
    • /
    • pp.175-184
    • /
    • 2009
  • 해양센서네트워크에서 센서 노드간의 거리는 네트워크의 성능을 좌우하는 매우 중요한 요소 중 하나이다. 본 논문은 해양환경에 적합한 통신 경로를 설계하기 위하여 효율적인 거리를 설정하고 레벨(Level)을 나누는 기법을 제안한다. 제안한 기법으로 설정된 경로를 유지하고 에너지 효율을 극대화 하여 전체 네트워크의 수명을 연장하는 방안을 연구하는 것에 목적을 두었다. 설정된 경로는 내 외부적인 요소들에 의해 유동적으로 변경될 수 있으며 제안된 경로 강화 기법을 통해 더욱 견고한 해양센서 네트워크를 구축한다.

An Optimal Algorithm for the Sensor Location Problem to Cover Sensor Networks

  • 김희선;박성수
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2006년도 춘계공동학술대회 논문집
    • /
    • pp.17-24
    • /
    • 2006
  • We consider the sensor location problem (SLP) on a given sensor field. We present the sensor field as grid of points. There are several types of sensors which have different detection ranges and costs. If a sensor is placed in some point, the points inside of its detection range can be covered. The coverage ratio decreases with distance. The problem we consider in this thesis is called multiple-type differential coverage sensor location problem (MDSLP). MDSLP is more realistic than SLP. The coverage quantities of points are different with their distance form sensor location in MDSLP. The objective of MDSLP is to minimize total sensor costs while covering every sensor field. This problem is known as NP-hard. We propose a new integer programming formulation of the problem. In comparison with the previous models, the new model has a smaller number of constraints and variables. This problem has symmetric structure in its solutions. This group is used for pruning in the branch-and-bound tree. We solved this problem by branch-and-cut(B&C) approach. We tested our algorithm on about 60 instances with varying sizes.

  • PDF