• Title/Summary/Keyword: Distance Sensor

Search Result 1,631, Processing Time 0.032 seconds

An improved LEACH-C routing protocol considering the distance between the cluster head and the base station (클러스터 헤드와 기지국간의 거리를 고려한 향상된 LEACH-C 라우팅 프로토콜)

  • Kim, TaeHyeon;Park, Sea Young;Kwon, Oh Seok;Lee, Jong-Yong;Jung, Kye-Dong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.373-377
    • /
    • 2022
  • Wireless sensor networks are being used in various fields. Wireless sensor networks are applied in many areas, such as security, military detection, environmental management, industrial control, and home automation. There is a problem about the limit of energy that the sensor network basically has. In this paper, we propose the LEACH-CCBD (Low Energy Adaptive Clustering hierarchy - Centrailized with Cluster and Basestation Distance) algorithm that uses energy efficiently by improving network transmission based on LEACH-C among the representative routing protocols. The LEACH-CCBD algorithm is a method of assigning a cluster head to a cluster head by comparing the sum of the distance from the member node to the cluster distance and the distance from the cluster node to the base station with respect to the membership of the member nodes in the cluster when configuring the cluster. The proposed LEACH-CCBD used Matlab simulation to confirm the performance results for each protocol. As a result of the experiment, as the lifetime of the network increased, it was shown to be superior to the LEACH and LEACH-C algorithms.

Study on the Development of Advanced Road Environment Sensor and Estimation Formula for Fog Visibility Distance (보급형 도로환경센서 및 안개 가시거리 추정식 개발 연구)

  • Cho, Jungho;Jin, Minsoo;Cho, Wonbum
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.4
    • /
    • pp.50-61
    • /
    • 2022
  • Snow, rain, fog, and particulate matter interfere with the vehicle driver's vision, which causes a non-secure safety distance and an increase in speed deviation, causing repetitive large-scale traffic accidents. This study developed a road environment sensor capable of measuring 11 types of fog, snow, rain, temperature, humidity, direction of wind, speed of wind, Insolation, atmospheric pressure, fine particles, rainfall, etc. and compared the visibility measured by the infrared signal value of the development sensor. The relationship between the existing fog visibility sensor and the development sensor measurement was derived from data measured at a visibility of 500m or less that directly affects road safety.

A New Routing Algorithm for Performance improvement of Wireless Sensor Networks (무선 센서 네트워크의 성능 향상을 위한 새로운 라우팅 알고리즘)

  • Yang, Hyun-Suk;Kim, Do-Hyung;Park, Joon-Yeol;Lee, Tae-Bong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • In this paper, a distributed 2-hop routing algorithm is proposed. The main purpose of the proposed algorithm is to reduce the overall power consumption of each sensor node so that the lifetime of WSN(wireless sensor network) is prolonged. At the beginning of each round, the base station transmits a synchronization signal that contains information on the priority table that is used to decide whether each sensor node is elected as a cluster head or not. The priority table is constructed so that sensor nodes closer to half energy distance from the base station get the higher priority. 2-hop routing is done as follows. Cluster heads inside half energy distance from the base station communicate with the base station directly. Those outside half energy distance have to decide whether they choose 2-hop routing or 1-hop routing. To do this, each cluster head outside half energy distance calculates the energy consumption needed to communicate with the base station via 1-level cluster head or directly. If less energy is needed when passing through the 1-level cluster head, 2-hop routing is chosen and if not, 1-hop routing is chosen. After routing is done each sensor nodes start sensing data.

Development of seam tracking sensing system for welding environment with wall (벽이 있는 용접 환경을 위한 용접선 검출 시스템 개발)

  • Park, Young-Kyun;Byun, Kyung-Seok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.4
    • /
    • pp.338-344
    • /
    • 2010
  • Both ends of welding line are often closed by wall in the welding of ship blocks. In this research, seam tracking sensing system for butt welding in the condition with wall was developed. Seam tracking sensing system measures position of carriage from wall and detects root-pass of welding line. The system consists of the laser displacement sensors and ultrasonic sensors. The laser displacement sensor reciprocal1y rotates by the motor and measures a distance from laser sensor to the welding material. The ultrasonic sensor measures a distance between welding system and walls. The distance measured by the ultrasonic sensor is used to get X(driving) position and to determine initial and end point of the weld line. Y(weaving) and Z(height) of the weld line are obtained by the distance measured by the laser displacement sensor and the orientation of the sensor. The sensing system includes the controller that is independent from the welding carriage. The seam tracking sensing system is attached to both side of welding carriage so that interference between welding torch and sensing system can be avoided during the welding. And both side sensing system minimize dead zone. Finally, developed sensing system was adhered to welding carriage and verified usefulness by experiments.

Algorithm on Detection and Measurement for Proximity Object based on the LiDAR Sensor (LiDAR 센서기반 근접물체 탐지계측 알고리즘)

  • Jeong, Jong-teak;Choi, Jo-cheon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.3
    • /
    • pp.192-197
    • /
    • 2020
  • Recently, the technologies related to autonomous drive has studying the goal for safe operation and prevent accidents of vehicles. There is radar and camera technologies has used to detect obstacles in these autonomous vehicle research. Now a day, the method for using LiDAR sensor has considering to detect nearby objects and accurately measure the separation distance in the autonomous navigation. It is calculates the distance by recognizing the time differences between the reflected beams and it allows precise distance measurements. But it also has the disadvantage that the recognition rate of object in the atmospheric environment can be reduced. In this paper, point cloud data by triangular functions and Line Regression model are used to implement measurement algorithm, that has improved detecting objects in real time and reduce the error of measuring separation distances based on improved reliability of raw data from LiDAR sensor. It has verified that the range of object detection errors can be improved by using the Python imaging library.

Real-time Error Detection Based on Time Series Prediction for Embedded Sensors (임베디드 센서를 위한 시계열 예측 기반 실시간 오류 검출 기법)

  • Kim, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.12
    • /
    • pp.11-21
    • /
    • 2011
  • An embedded sensor is significantly influenced by its spatial environment, such as barriers or distance, through low power and signal strength. Due to these causes, noise data frequently occur in an embedded sensor. Because the information acquired from the embedded sensor exists in a time series, it is hard to detect an error which continuously takes place in the time series information on a realtime basis. In this paper, we proposes an error detection method based on time-series prediction that detects error signals of embedded sensors in real time in consideration of the physical characteristics of embedded devices. The error detection method based on time-series prediction proposed in this paper determines errors in generated embedded device signals using a stable distance function. When detecting errors by monitoring signals from an embedded device, the stable distance function can detect error signals effectively by applying error weight to the latest signals. When detecting errors by monitoring signals from an embedded device, the stable distance function can detect error signals effectively by applying error weight to the latest signals.

Development of Ultrasonic Sensor to Measure the Distance in Underwater (수중 거리 측정을 위한 초음파 센서의 개발)

  • Kim, Chi-Hyo;Kim, Tae-Sung;Jung, Jun-Ha;Lee, Jin-Hyung;Lee, Min-Ki;Jang, In-Sung;Shin, Chang-Joo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.293-298
    • /
    • 2013
  • This research develops an ultrasonic sensor to measure the distance in underwater. The ultrasonic transducer transmits an acoustic signal to an object and receives the echo signal reflected from the object. The ultrasonic driver calculates a distance by multiplying the acoustic speed to the time of flight(TOF) which is the time necessary for the acoustic signal to travel from the transducer to the object. We apply a thresholding and a cross correlation methods to detect the TOF and show their results. When an echo pulse is corrupted with noise and its shape is distorted, the cross correlation method is used to find the TOF based on the maximum similarity between the reference and the delayed echo signals. The echoes used for the reference signal are achieved at the different environments, which improves the performance of the sensor. This paper describes the driver of the acoustic sensor and analyzes the performance of sensors in different measurement environments.

  • PDF

Optical System Design and Experimental Demonstration of Long-range Reflective-type Precision Displacement Sensors (반사형 장거리 정밀 변위 감지기용 광학계 설계 및 측정)

  • Lim, Jae-In;Kim, Seung-Hwan;Lee, Seoung-Hun;Jeong, Hae-Won;Lee, Min-Hee;Kim, Shung-Whan;Kim, Kyong-Hon
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.3
    • /
    • pp.151-158
    • /
    • 2011
  • This paper reports design and demonstration of optical systems for reflective-type remote optical displacement sensors. Optical systems for light illumination sources and a position sensitive detector (PSD) for the displacement sensor were developed to sense displacement of bridges and instability of skyscrapers in a distance range from 10 m to 250 m to an accuracy better than a few mm. Performance of the optical systems was verified by composing a displacement sensor and by using it in measurement of displacement of a remote target with proper reflective optics depending on distance. The displacement sensor was composed of two LED light sources, each with collimating optics, and a two-dimensional PSD with telescope-type optics. Its displacement resolutions was measured to be 0.1 mm at a distance of 10 m and less than 3 mm at a distance of 250 m.

Development of Multi-purpose Smart Sensor Using Presence Sensor (재실 감지 센서를 이용한 다용도 스마트 센서 개발)

  • Cha, Joo-Heon;Yong, Heong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.103-109
    • /
    • 2015
  • This paper introduces a multi-purpose smart fusion sensor. Normally, this type of sensor can contribute to energy savings specifically related to lighting and heating/air conditioning systems by detecting individuals in an office building. If a fire occurs, the sensor can provide information regarding the presence and location of residents in the building to a management center. The system consists of four sensors: a thermopile sensor for detecting heat energy, an ultrasonic sensor for measuring the distance of objects from the sensor, a fire detection sensor, and a passive infrared sensor for detecting temperature change. The system has a wireless communication module to provide the management center with control information for lighting and heating/air conditioning systems. We have also demonstrated the usefulness of the proposed system by applying it to a real environment.

Respiration Measurement System using Textile Capacitive Pressure Sensor (전기용량성 섬유 압력센서를 이용한 호흡측정 시스템)

  • Min, Se-Dong;Yun, Young-Hyun;Lee, Chung-Keun;Shin, Hang-Sik;Cho, Ha-Kyung;Hwang, Seon-Cheol;Lee, Myoung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.58-63
    • /
    • 2010
  • In this paper, we proposed a wearable respiration measurement system with textile capacitive pressure sensor. Belt typed textile capacitive pressure sensor approach of respiration measurement, from which respiration signatures and rates can be derived in real-time for long-term monitoring, are presented. Belt typed textile capacitive pressure sensor has been developed for this measurement system. the distance change of two plates by the pressure of motion has been used for the respiration measurement in chest area. Respiration rates measured with the textile capacitive pressure sensor was compared with standard techniques on 8 human subjects. Accurate measurement of respiration rate with developed sensor system is shown. The data from the method comparison study is used to confirm theoretical estimates of change in capacitance by the distance change. The current version of respiratory rate detection system using textile capacitive pressure sensor can successfully measure respiration rate. It showed upper limit agreement of $3.7997{\times}10^{-7}$ RPM, and lower limit of agreement of $-3.8428{\times}10^{-7}$ RPM in Bland-Altman plot. From all subject, high correlation were shown(p<0.0001). The proposed measurement method could be used to monitor unconscious persons, avoiding the need to apply electrodes to the directly skin or other sensors in the correct position and to wire the subject to the monitor. Monitoring respiration using textile capacitive pressure sensor offers a promising possibility of convenient measurement of respiration rates. Especially, this technology offers a potentially inexpensive implementation that could extend applications to consumer home-healthcare and mobile-healthcare products. Further advances in the sensor design, system design and signal processing can increase the range and quality of the rate-finding, broadening the potential application areas of this technology.