• 제목/요약/키워드: Dissolving pulp

검색결과 30건 처리시간 0.023초

폐지를 이용한 기능성 육묘지의 제조(제2보) - 육묘지 적성 시험 - (Development of multipurpose seed paper from waste paper(II) - Focused on field test of manufactured seed paper -)

  • 엄태진;박성배
    • 펄프종이기술
    • /
    • 제39권1호
    • /
    • pp.30-37
    • /
    • 2007
  • The seed paper was used in farm field recently for a sound young plant. The most of seed paper are made of synthetic non-woven sheet. Therefore, it is very difficult to bio-degrade in soil and is very hard to have some special function, for example keeping herbicide and/or insecticide activity because of its lack of chemical acceptability. The purpose of this research is manufacture of seedling paper which have a function of herbicide activity from waste paper. The fiber properties from waste paper were remarkably improved by fine removal with washing and/or flotation process. The paper-making ability for seed paper was enhanced with enzyme treatment of secondary fibers. The paper for seedling must have a good bio-degradation ability in soils. The absorption amount of chemical like as dithiopyr was increased remarkably in enzyme treated base paper. The embossing treatment of base paper was very effective for seed attachment and chemicals retention. And also, the developed seed paper showed a good penetration property of young root through embossed paper.

CED(Cupriethylene diamine)과 NMMO (N-methylmorpholine-N-oxide)를 이용한 셀룰로오스의 중합도 측정법의 비교 (Comparison of cellulose DP measurements using the CED (Cupriethylene diamine) and NMMO(N-methylmorpholine-N-oxide))

  • 이민우;박지순;박동휘;서영범
    • 펄프종이기술
    • /
    • 제42권5호
    • /
    • pp.62-66
    • /
    • 2010
  • Cellulosic materials were dissolved by NMMO(N-methylmorpholine-N-oxide) and CED (Cupriethylene diamine), respectively, to measure their DPs (degrees of polymerization) by using viscometer. We changed cellulose DPs by applying various amounts of low intensity electron-beam radiation to the cellulosic materials. NMMO is environmental-friendly, non-toxic, and biodegradable organic cellulose solvent and used industrially because of its high cellulose dissolving power and high solvent recovery ratio. The cellulose DP measurement results using these two different chemicals were correlated highly ($R^2$ >0.95). It was also found that cellulose with high DP was dissolved more easily in NMMO than CED. In addition, NMMO method gave more higher resolution in the measurement.

방직용 고품질 재생섬유 제조를 위한 면린터 전처리공정에 관한 연구 (Study of cotton linter pre-treatment process for producing high quality regenerated fibers for fabrics)

  • 박희정;한정수;손하늘;서영범
    • 펄프종이기술
    • /
    • 제45권3호
    • /
    • pp.27-35
    • /
    • 2013
  • Cotton linter pre-treatment methods using electron beam and sulfuric acid were investigated to prepare high quality regenerated fibers for fabrics. So far, NaOH was used to reduce the degree of polymerization (DP) of the cotton linter for ease of dissolving by cellulose solvent. Two pre-treatment methods were developed to reduce the consumption of the chemicals (NaOH) and to control the DP of cellulose more precisely. Changes in ${\alpha}$-cellulose contents and brightness by the pre-treatments were also important concerns. Both electron beam irradiation and sulfuric acid were shown to be effective on controlling the DP of cellulose and to reduce the chemical consumption, but reduced ${\alpha}$-cellulose contents as well in this study. Sulfuric acid pre-treatment, which needed additional washing process after the pre-treatment when comparing to the electron beam irradiation method, gave the highest brightness and the highest reduction of ${\alpha}$-cellulose content.

생분해성 고분자 코팅 조림묘목용 mulching mat 원지의 적용성 평가 (The applicable evaluation of biodegradable polymer coated-mulching paper for afforestation seedlings)

  • 이금자;유영정;고승태;김형진
    • 펄프종이기술
    • /
    • 제42권1호
    • /
    • pp.54-63
    • /
    • 2010
  • Recently, as the function of largest supplier of biomass for "low carbon green growth", the necessity for systematic management of afforestation areas is emphasizing. The forestation of seedling, besides the afforestation cost itself, is required some additional follow-up management costs, like mowing and fertilizing of forestation area, and removal of bindweed. The mulching mat for afforestation seedlings is available for rooting of little seedlings as well as initial forestation expenses. Mulching technique is also used to control soil temperature and moisture by covering the surface of ground. In this study, the paper based-mulching film coated with biodegradable polymer and functional additive was specially produced using laboratory bar coater, and analyzed for its degradable behavior. Coating colors were prepared by dissolving PE (polyester) 80 % and PLA(polylactic acid) 20 % in chloroform and finally applied to handsheet prepared by preceding study conditions. Base paper and polymer-coated paper were artificially aged by 2 kinds of degradation methods, which are soil degradation by microorganism and light degradation by 257 nm UV wavelengths. Strength property, oxidation index and morphological property were evaluated by reduction rates of tensile strength, FTIR spectra ratio of carboxyl and carbonyl group and SEM micrograph. As these results, polymer coated-paper was superior to base paper in degradation behaviors, having results with lower reduction rate of strength properties.

LiBr 수용액으로 용해시켜 제조한 거대억새 홀로셀룰로오스 용해 및 재생 필름특성 (Dissolution Characteristics and Regenerated Miscanthus Sinensis Holocellulose Film Prepared by Dissolving the LiBr Solution)

  • 양지욱;권구중;황교정;황원중;황재현;김대영
    • 펄프종이기술
    • /
    • 제47권6호
    • /
    • pp.89-97
    • /
    • 2015
  • In this study, dissolution characteristics of 60% LiBr aqueous solution for Miscanthus sinensis holocellulose in accordance with heating time and characteristics of regenerated films were analyzed. Miscanthus sinensis holocellulose was made by peracetic acid method. During the dissolution of 60% LiBr solution for the holocellulose, the dissolution was started from the tip of the cellulose fiber after about 7 minutes, and proceeded as it swollen like a balloon. A lot of Si was identified by analyzing hollocellulose regenerated film through SEM/EDS. Cross section of regenerated film as dissolution time till 40 minutes of dissolution showed multilayered structure and fiber orientation. But after 40 minutes, multilayered structure and fiber orientation was not observed. The crystal structure of the holecellulose was transformed cellulose I into cellulose II. Therefore, dissolution for 20 minutes with 60% LiBr solution in the condition of $190^{\circ}C$ hot plate was shown as an optimum condition to manufacture the holocellulose regenerated film.

Recovery of Platinum from Spent Petroleum Catalysts by Substrate Dissolution in Sulfuric Acid

  • Lee, Jae-Chun;Jinki Jeong;Kim, Wonbaek;Jang, Hee-Dong
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.472-477
    • /
    • 2001
  • Spent catalysts containing platinum were generated in petroleum refinery and other chemical industries. The reclamation of precious metals from such wastes has long been attempted in view of their rare, expensive and indispensable nature. In this study, the recovery of platinum from petroleum catalysts was attempted by a method consisting mainly of dissolving alumina substrate with sulfuric acid thereby concentrating insoluble platinum. Also, platinum dissolved partially in sulfuric acid was recovered by a cementation method using aluminum metal as a reductive agent. The effect of temperature, time, concentration of sulfuric acid. and pulp density on the dissolution of substrate was investigated. When the substrate of platinum catalyst was ${\gamma}$-AI$_2$O$_3$ about 95% alumina was dissolved in 6.0M sulfuric acid at 10$0^{\circ}C$ for 2 hours. When the substrate was the mixture of ${\gamma}$-A1$_2$O$_3$and $\alpha$-A1$_2$O$_3$about 92% was dissolved after 4 hours. As a result, more than 99% of platinum could be recovered by this method and aluminum sulfate was obtained as byproduct.

  • PDF

페이퍼크라프트(Papercraft) 패션의 디자인 방법과 표현 특성 (A study on design methods and expressional characteristics of papercraft fashion)

  • 후명철;유영선
    • 복식문화연구
    • /
    • 제25권3호
    • /
    • pp.315-326
    • /
    • 2017
  • The purpose of this study is to investigate the design methods and characteristics of papercraft fashion from 2001 to 2015. The study has been conducted through theoretical research and case study. Overall, types of papercraft expressions are classified into the following four categories: narrative papercraft fashion, organic papercraft fashion, variable papercraft fashion, and recycling papercraft fashion. The characteristics and aspects of each type of papercraft is described below. First, narrative papercraft fashion expresses as factual description of the natural environment. These works convey fantastic image by showing fairy tale animals or plants using paper folding or cutting. Second, organic papercraft fashion creates a futuristic shape by expressing organic parts in nature. Also, it often depicts future-oriented images by repeatedly representing organic shapes using uniform patterns in nature. Third, variable papercraft fashion expresses a variety of changing shapes through a flexible design based on the style of wearing. This variation may be accomplished through changeable dress connected to human gestures. Variable papercraft represents play-fulness, which conveys enjoyment to the wearer and the audience. Fourth, recycling papercraft fashion uses paper materials of the past, and recreates them into artworks through handicraft techniques. Recycling papercraft conveys high value added fashion by dissolving the material into pulp.

WC-Co 초경합금(超硬合金) 슬러지로부터 왕수처리(王水處理)를 이용한 텅스텐의 회수(回收) (Recovery of Tungsten from WC-Co Hardmetal Sludge by Aqua regia Treatment)

  • 김지혜;김은영;김원백;김병수;이재천;신재수
    • 자원리싸이클링
    • /
    • 제19권4호
    • /
    • pp.41-50
    • /
    • 2010
  • 초경공구의 제조공정에서 발생하는 WC-Co 초경합금 슬러지로부터 텅스텐의 순환활용을 위한 기초연구가 수행되었다. 왕수를 사용하여 슬러지로부터 코발트를 침출함과 동시에 탄화텅스텐을 텅스텐산으로 변환시켜 회수하였다. 왕수농도, 반응온도와 시간, 광액농도 등이 코발트의 침출과 텅스텐산의 생성에 미치는 영향을 조사하였으며 최적조건을 도출하였다. 왕수농도 100 vol.%, 반응온도 $100^{\circ}C$, 반응시간 60분에서슬러지의 광액농도가 400 g/L에 도달할 때 까지 슬러지로부터 코발트의 완전한 추출이 이루어졌으나, 슬러지에 존재하는 모든 탄화텅스텐이 텅스텐산으로 완전히 전환되는 것은 광액농도가 150 g/L 이하일 때 이었다. 생성된 텅스텐산을 암모니아 용액에 용해함으로서 금속 불순물들을 불용성 잔사로 제거하는 것이 가능하였다. 증발결정 공정을 통하여 정제된 암모늄 텅스테이트 용액으로부터 99.85%의 순도를 가지는 암모늄 파라텅스테이트($(NH_4)_{10}{\cdot}H_2W_{12}O_{42}{\cdot}4H_2O$)를 얻을 수 있었다.

Sodium Hydroxide-urea 수용액을 이용하여 제조한 셀룰로오스계 에어로겔의 특성 (Characteristics of Cellulose Aerogel Prepared by Using Aqueous Sodium Hydroxide-urea)

  • 김은지;권구중;김대영
    • Journal of the Korean Wood Science and Technology
    • /
    • 제41권4호
    • /
    • pp.302-309
    • /
    • 2013
  • Sodium hydroxide-urea 수용액을 이용한 다공성 셀룰로오스계 에어로겔은 용해, 겔화, 재생, 유기용매 치환과 동결건조과정에 의해 제조되었다. 에어로겔의 구조적 특성과 다공성은 주사전자현미경과 질소흡착장치를 이용하여 분석하였다. 그 결과, 용해펄프는 완전히 용해되었지만, 여과지와 홀로셀룰로오스는 원심분리과정에서 수용액에 용해된 부분과 용해되지 않은 부분으로 구분되었다. 용해펄프 에어로겔의 표면은 다공성 공극, 내부는 그물모양의 망목상 구조가 관찰되었다. 여과지와 홀로셀룰로오스 에어로겔은 표면이 압축된 다공성 네트워크 형태였고, 내부는 open-pore 구조의 나노피브릴 네트워크로 구성되었다. 홀로셀룰로오스 에어로겔에서 수용액에 용해되지 않는 형태의 섬유들이 관찰되었다. 용해펄프로부터 만들어진 에어로겔의 비표면적은 260~326 $m^2/g$ 범위였고, 농도 증가와 함께 감소하였다. 그러나 여과지 에어로겔의 비표면적(198~418 $m^2/g$)은 농도 증가와 함께 증가하였다. 홀로셀룰로오스 에어로겔은 2% 농도에서는 137 $m^2/g$로 농도의 증가와 함께 증가하여 4% 농도에서 401 $m^2/g$로 최댓값을 보여주었고, 5% 농도에서 감소하였다.

석유 폐촉매로부터 백금 회수를 위한 담체의 황산용해 (Sulfuric Acid Dissolution of Carriers for Recovering Platinum from the Spent Petroleum Catalysts)

  • 이재천;정진기;김병수;김민석;조영수
    • 자원리싸이클링
    • /
    • 제13권1호
    • /
    • pp.14-21
    • /
    • 2004
  • 백금을 함유하고 있는 폐촉매가 정유공장과 화학공장에서 발생하고 있다. 백금은 고가일 뿐만 아니라 희귀하고 뛰어난 물성으로 인하여 오래 전부터 회수대상이 되어 왔다. 본 연구에서는 알루미나로 구성된 폐촉매의 담체를 황산으로 용해하여 불용성 백금을 농축하는 방법으로 석유 폐촉매로부터 백금을 회수하고자 하였다. 황산에 일부 용해된 백금은 알루미늄을 환원제로 사용하는 세멘테 이션법으로 회수되었다. 온도, 시간, 황산농도, 광액농도 등이 담체의 용해에 미치는 영향을 조사하였다. 담체가 $\Upsilon-Al_2$$O_3$로 구성된 폐 촉매를 6.0 M $H_2$$SO_4$ 용액으로 $100^{\circ}C$에서 2시간 동안 용해하였을 때 알루미나의 용해율은 약 95% 정도이었다. 담체가 $\Upsilon-Al_2$O$_3$$\alpha$-$Al_2$O$_3$의 혼합물로 구성되어 있는 경우, 4시간 용해하였을 때 약 92%의 알루미나가 용해하였다. 담체를 황산으로 용해한 다음 백금을 회수하는 방법을 이용하여 석유 폐촉매로부터 99% 이상의 백금을 회수할 수 있었으며 동시에 황산알루미늄을 부산물로 얻었다.