• Title/Summary/Keyword: Dissolved precipitates

Search Result 84, Processing Time 0.026 seconds

Effect of Thermal Exposure and Rejuvenation Treatment on Microstructure and Stress Rupture Properties of IN738LC (IN738LC 합금의 열간 노출 및 재생 열처리에 따른 미세조직과 응력 파단 특성의 변화)

  • Choe, Baek-Gyu;Ju, Dong-Won;Kim, In-Su;Jang, Jung-Cheol;Jo, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.915-922
    • /
    • 2001
  • Effects of thermal exposure and rejuvenation treatment on the microstructural evolution and the stress-rupture properties of IN738LC have been investigated. The role of precipitates on the stress-rupture properties has been analyzed through microstructural observations. Thermal exposure at $982^{\circ}C$ for 1000 hours gave rise to precipitation of $\sigma$ phase and coarsening of r'. The microstructural degradation with thermal exposure at $982^{\circ}C$ deteriorated stress rupture properties of the alloy. All the existing phases except MC carbides have completely dissolved into the matrix with homogenization treatment at $1200^{\circ}C$ for 2 hours. Microstructure and stress-rupture properties of the thermal exposed specimens have been successfully rejuvenated by the proposed treatment.

  • PDF

Effect of HPLC Analytical Procedure upon Determining Drug Content in PLGA Microspheres

  • Heo, Sun-Ju;Lee, Hong-Hwa;Lee, Min-Jung;Sah, Hong-Kee
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.3
    • /
    • pp.193-200
    • /
    • 2010
  • The objective of this study was to investigate the effects of sample preparation, HPLC conditions and peak measurement methods upon determining progesterone content of poly-d,l-lactide-co-glycolide microspheres. A series of the microspheres with different formulations was first prepared. To determine their actual drug contents, the microspheres were dissolved in tetrahydrofuran and diluted with various amounts of methanol to precipitate the polymer. After removal of polymeric precipitates, the filtrates were subject to HPLC analysis under versatile experimental conditions. Interestingly, the composition of a sample solution (e.g., the ratio of methanol to tetrahydrofuran) affected the magnitudes of both peak fronting and peak broadening of progesterone. Its peak became broader and more asymmetrical at lower methanol:tetrahydrofuran ratios. Furthermore, its peak height was influenced by the proportion of tetrahydrofuran in a sample solution. Such problems encountered with tetrahydrofuran were exacerbated when a larger volume of the sample solution was injected onto an analytical column. Under our experimental conditions a peak area measurement provided more accurate and reliable determination of progesterone content in various microspheres than a peak height determination. Optimizing the composition of a sample solution, HPLC chromatographic conditions and peak analysis methods was a prerequisite to an accurate determination of progesterone encapsulated within microspheres.

Influence of Ag Addition on the Mechanical Properties and Electrical Conductivity of Cu-Mg-P Alloys (Cu-Mg-P 합금의 기계적 성질과 전기전도도에 미치는 Ag첨가의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik;Kim, Ki-Tae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.1
    • /
    • pp.10-16
    • /
    • 2010
  • The microstructure of Cu-Mg-P alloy sheet consisted of Cu matrix and very fine MgP precipitate, and it has been observed that the microstructure remains virtually unchanged by Ag additions up to 2%. Ag solutes were dissolved into the matrix and hardly found in the precipitates. The hardness increased with increase of the Ag content, while the conductivity slightly decreased. Strain hardening through cold rolling was found to be effective in improving the hardness, especially in high-Ag alloys. Aging treatment was conducted either before the first cold rolling or between the first and the final cold rolling, and the conductivity was significantly higher at the former case, regardless of the Ag content. Softening of Cu-Mg-P alloy sheet was remarkable above $400^{\circ}C$ and the Ag content did not show any significant effect on it.

Effects of Ca, Si on the Microstructure and Aging Characteristic of AZ91 Alloy (AZ91합금의 조직(組織)과 시효특성(時效特性)에 미치는 Ca 및 Si의 영향(影響))

  • Jhee, T.G.;Kim, Y.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.6
    • /
    • pp.260-268
    • /
    • 2002
  • The effects of calcium and silicon on microstructure and aging characteristics of AZ91 magnesium alloy during T5 treatment was investigated. The addition of 0.88% calcium or 0.25% silicon to AZ91 alloy made dendrite cell smaller. Especially, silicon is more effectively acted as refinement of the dendrite cell than calcium. It is due to that $Mg_2Si$ precipitated at the dendrite cell boundary or in the matrix during T5 treatment of Si added AZ91 alloy retarded the growth of the secondary phase. In the mean while, without inducing the precipitates containing calcium, calcium was segregated mainly around secondary phase such as $Mg_{17}Al_{12}$ and partially dissolved in ternary eutectic (Mg-Al-Ca) structure. In the AZ91 alloy containing both silicon and calcium, more finely distributed $Mg_2Si$ in matrix homogeneously and much finer microstructure were obtained than those containing silicon or calcium. Hence, An AZ91 containing both silicon and calcium was more effective to retarding the growth of the secondary phase than the other AZ91 alloy such as AZ91 alloy containing silicon or AZ91 alloy containing calcium.

A Study on Hot Ductility Behavior of Ni-based Superalloys (니켈기 초내열합금의 고온연성거동에 관한 연구)

  • Lee, Choung-Rae;Um, Sang-Ho;Kim, Sung-Wook;Choi, Cheol;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.22 no.2
    • /
    • pp.59-68
    • /
    • 2004
  • Plasma transferred arc welding (PTAW) has been taken into consideration for repairing Ni-based superalloy components used gas turbine blades. Various cracks has been generally reported to be found in the base metal heat affected zone(HAZ) along grain boundary. Thus, hot cracking susceptibility of Ni-based superalloys was evaluated according to heat treatments. Hot ductility test was conducted on specimens with solution treated at 112$0^{\circ}C$ for 2 hours and aging treated at 845$^{\circ}C$ for 24hours after solution treatment. The results of the hot ductility test appeared that solution treated specimens were the highest ductility recovery rate among three conditions. The loss of ductility at high temperature in Ni-based superalloy was mainly controlled by the degree of pain boundary wetting due to constitutional liquation of MC carbide precipitates. Meanwhile, the highest ductility recovery rate in solution-treated alloys seems to be lack of M23C6, which can be dissolved during heating and then result in the local enrichment of Cr in the vicinity of the grain boundary.

Removal of Heavy Metals from Acid Mine Drainage Using Sulfate Reducing Bacteria (황산염환원균을 이용한 폐광폐수의 중금속 제거)

  • Paik, Byeong Cheon;Kim, Kwang Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.47-54
    • /
    • 1999
  • SRB(Sulfate Reducing Bacteria) converts sulfate into sulfide using an organic carbon source as the electron donor. The sulfide formed precipitates the various metals present in the AMD (Acid Mine Drainage). This study is the fundamental research on heavy metal removal from AMD using SRB. Two completely mixed anaerobic reactors were operated for cultivation of SRB at the temperature of $30^{\circ}C$ and anaerobic batch reactors were used to evaluate the effects of carbon source, COD/sulfate($SO_4^=$) ratio and alkalinity on sulfate reduction rate and heavy metal removal efficiency. AMD used in this study was characterized by low pH 3.0 and 1000mg/l of sulfate and dissolved high concentration of heavy metals such as iron, cadmium, copper, zinc and lead. It was found that glucose was an organic carbon source better than acetate as the electron donor of SRB for sulfate reduction in AMD. Amount of sulfate reduction maximized at the COD(glucose)/sulfate ratio of 0.5 in the influent and then removal efficiencies of heavy metals were 97.5% of Cu, 100% of Pb, 100% of Cr, 49% of Mn, 98% of Zn, 100% Cd and 92.4% of Fe. Although sulfate reduction results in an increase in the alkalinity of the reactor, alkalinity of 1000mg/1 (as $CaCo_3$) should be should be added continuously to the anaerobic reactor in order to remove heavy metals from AMD.

  • PDF

Effect of Thermal Exposure and Rejuvenation Treatment on Microstructure and Stress Rupture Properties of IN738LC (IN738LC 합금의 열간 노출 및 재생 열처리에 따른 미세조직과 응력 파단 특성의 변화)

  • Choe, Baek-Gyu;Ju, Dong-Won;Kim, In-Su;Jang, Jung-Cheol;Jo, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.11 no.10
    • /
    • pp.833-840
    • /
    • 2001
  • Effects of thermal exposure and rejuvenation treatment on the microstructural evolution and the stress-rupture properties of IN738LC have been investigated. The role of precipitates on the stress- rupture properties has been analyzed through microstructural observations. Thermal exposure at $982^{\circ}C$ for 1000 hours gave rise to precipitation of $\sigma$ phase and coarsening of ${\gamma}$'. The microstructural degradation with thermal exposure at $982^{\circ}C$ deteriorated stress rupture properties of the alloy. All the existing phases except MC carbides have completely dissolved into the matrix with homogenization treatment at $1200^{\circ}C$ for 2 hours. Microstructure and stress-rupture properties of the thermal exposed specimens have been successfully rejuvenated by the proposed treatment.

  • PDF

Microstructures and Mechanical Properties of AZ31-(0~0.5%)Ca alloys (AZ31-(0~0.5)%Ca 합금의 미세조직과 기계적 성질)

  • Jun, Joong-Hwan;Park, Bong-Koo;Kim, Jeong-Min;Kim, Ki-Tae;Jung, Woon-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.5
    • /
    • pp.299-304
    • /
    • 2004
  • Influence of Ca addition on microstructure and room temperature mechanical properties has been studied for AZ31(Mg-3%Al-1%Zn-0.2%Mn)-(0~0.5)%Ca wrought alloys, based on experimental results from metallography, X-ray diffractometry and mechanical tests. Yield strength, ultimate tensile strength and hardness of the alloys increased remarkably with increasing Ca content, whereas elongation was deteriorated continuously. Microstructural examination revealed that Ca addition efficiently refined grains of ${\alpha}$(Mg) phase and that some of the Ca dissolved in ${\beta}(Mg_{17}Al_{12})$ precipitates. The former and the latter facts are thought to be responsible for improved strength and loss of ductility of the AZ31+Ca wrought alloys, respectively.

A Novel Method for Calcium Hardness Control of Closed OCC Recycling System

  • Ow, Say-Kyoun;Shin, Jong-Ho;Song, Bong-Keun;Ryu, Jeong-Yong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.164-171
    • /
    • 1999
  • A new technique for recycling process water was developed in order to reduce the calcium hardness of the closed OCC recycling system. Calcium ions present in the white water were precipitated as calcium carbonate by a reaction with sodium carbonate and the CaCO$_3$precipitates were easily removed from the system by a dissolved air flotation(DAF) method. After the DAF stage, CO$_2$-gas was purged into the water because the pH of Na$_2$CO$_3$-treated white water was reduced to neutral by CO$_2$gas. Since CaCO$_3$precipitate tends to stick onto the fine fiber surface and then is selectively removed from the water, a proper amount of suspended solid in the process water acts as an important factor in deciding the removal efficiency. By the application of Na$_2$CO$_3$addition - DAF - CO$_2$purging to the short circulated white water the calcium hardness was significantly reduced by 92% and more. The removal of calcium ions with fine fibers led to drainage improvement, reduction of fresh water consumption, and enhanced efficiency of wet-end chemicals.

Characterization of Potato Polyphenol Oxidase Purified by p-aminobenzoic Acid-sepharose Affinity Column

  • Kim, Seul-Ki;Kang, Ho-Joon;Kim, Jae-Joon;Kim, Woo-Yeon
    • Horticultural Science & Technology
    • /
    • v.29 no.3
    • /
    • pp.255-259
    • /
    • 2011
  • Polyphenol oxidases (PPO) are copper-containing enzymes responsible for tissue browning in fruits and vegetables including potato, apple and pears. Although these enzymes have been studied for many years, their physiological roles in plants are not yet clear. Therefore, these enzymes need to be purified to characterize further from potato tubers. The classical methods used for the purification of PPO involve several steps. So in this study, we developed a one-step chromatography process for the potato tuber PPO purification. After removal of salts from dissolved ammonium sulfate precipitates of potato tuber extracts using Sephadex-G50 gel filtration, affinity chromatography was carried out on NHS-activated Sepharose 4B using p-aminobenzoic acid as a ligand. The purified enzyme was confirmed by silver staining and a zymogram. The optimum temperature and pH for the purified potato tuber PPO were $15^{\circ}C$ and pH 6.0, respectively. The results obtained in the present study will aid to evaluate PPO from various fruits and vegetables.