DOI QR코드

DOI QR Code

Effect of HPLC Analytical Procedure upon Determining Drug Content in PLGA Microspheres

  • Received : 2010.05.16
  • Accepted : 2010.06.01
  • Published : 2010.06.20

Abstract

The objective of this study was to investigate the effects of sample preparation, HPLC conditions and peak measurement methods upon determining progesterone content of poly-d,l-lactide-co-glycolide microspheres. A series of the microspheres with different formulations was first prepared. To determine their actual drug contents, the microspheres were dissolved in tetrahydrofuran and diluted with various amounts of methanol to precipitate the polymer. After removal of polymeric precipitates, the filtrates were subject to HPLC analysis under versatile experimental conditions. Interestingly, the composition of a sample solution (e.g., the ratio of methanol to tetrahydrofuran) affected the magnitudes of both peak fronting and peak broadening of progesterone. Its peak became broader and more asymmetrical at lower methanol:tetrahydrofuran ratios. Furthermore, its peak height was influenced by the proportion of tetrahydrofuran in a sample solution. Such problems encountered with tetrahydrofuran were exacerbated when a larger volume of the sample solution was injected onto an analytical column. Under our experimental conditions a peak area measurement provided more accurate and reliable determination of progesterone content in various microspheres than a peak height determination. Optimizing the composition of a sample solution, HPLC chromatographic conditions and peak analysis methods was a prerequisite to an accurate determination of progesterone encapsulated within microspheres.

Keywords

References

  1. Beck, L.R., Ramos, R.A., Flowers, C.E., Lopez, G.Z., Lewis, D.H., Cowsar, D.R., 1981. Clinical evaluation of injectable biodegradable contraceptive system. Am. J. Obstet. Gynecol. 140, 799-806. https://doi.org/10.1016/0002-9378(81)90743-2
  2. Benoit, J.P., Courteille, F.,Thies, C., 1986. A physicochemical study of the morphology of progesterone-loaded poly (D,Llactide) microspheres. Int. J. Pharm. 29, 95-102. https://doi.org/10.1016/0378-5173(86)90106-7
  3. Cherrak, D., Guernet, E., Cardot, P., Herrenknecht C., Czok, M., 1997. Viscous fingering: a systematic study of viscosity effects in methanol-isopropanol systems. Chromatographia 46, 647-654. https://doi.org/10.1007/BF02490526
  4. Forgacs, E., Cserhati, T., Balogh, S., Kaliszan, R., Haber, P., Nasal,A., 2001. Separation of strength and selectivity of mobile phase by spectral mapping technique. Biomed. Chromatogr. 15, 348-355. https://doi.org/10.1002/bmc.83
  5. Formento, J.L., Moll, J.L., Francoual, M., Krebs, B.P., Milano, G., Renee, N., Khater, R., Frenay, M., Namer, M., 1987. HPLC micromethod for simultaneous measurement of estradiol, progesterone, androgen and glucocorticoid receptor levels. Applications to breast cancer biopsies. Eur. J. Can. Clin. Oncol. 23, 1307-1314. https://doi.org/10.1016/0277-5379(87)90113-1
  6. Gaborieau, M., Nicolas, J., Save, M., Charleux, B., Vairon, J.P., Gilbert, R.G., Castignolles, P., 2008. Separation of complex branched polymers by size-exclusion chromatography probed with multiple detection. J. Chromatogr. A. 1190, 215-223. https://doi.org/10.1016/j.chroma.2008.03.031
  7. Ha, H., Lee, Y.S., Lee, J.H., Choi, H., Kim, C., 2006. High performance liquid chromatographic analysis of isoflavones in medicinal herbs. Arch. Pharm. Res. 29, 96-101. https://doi.org/10.1007/BF02977475
  8. Issaq, H.J., Young, R.M., 1977. Peak area vs peak height in flameless atomic absorption measurements. Appl. Spectrosc. 31, 171-172. https://doi.org/10.1366/000370277774463878
  9. Keunchkarian, S., Reta, M., Romero L., Castells, C., 2006. Effect of sample solvent on the chromatographic peak shape of analytes eluted under reversed-phase liquid chromatographic conditions. J. Chromatogr. A. 1119, 20-28. https://doi.org/10.1016/j.chroma.2006.02.006
  10. Leamen, M.J., McManus N.T., Penlidis, A., 2004. Refractive index increment (dn/dc) using GPC for a-methyl styrene/methyl methacrylate copolymer at 670 nm in tetrahydrofuran. J. Appl. Polym. Sci. 94, 2545-2547. https://doi.org/10.1002/app.20943
  11. Mehta, R.C., Thanoo B.C., DeLuca, P.P., 1996. Peptide containing microspheres from low molecular weight and hydrophilic poly(d,l-lactide-co-glycolide). J. Control. Release 41, 249-257. https://doi.org/10.1016/0168-3659(96)01332-6
  12. Moshgeghi, A.A., Peyman, G.A., 2005. Micro- and nanoparticulates. Adv. Drug Deliver. Rev. 57, 2047-2052. https://doi.org/10.1016/j.addr.2005.09.006
  13. Pawar, R., Ben-Ari, A., Domb, A.J., 2004. Protein and peptide parenteral controlled delivery. Expert Opin. Biol. Th., 4, 1203-1212. https://doi.org/10.1517/14712598.4.8.1203
  14. Pucci, V., Bugamelli, F., Mandrioli, R., Luppi, B., Raggi, M.A., 2003. Determination of progesterone in commercial formulations and in non-conventional micellar systems. J. Pharmaceut. Biomed. Anal. 30, 1549-1559. https://doi.org/10.1016/S0731-7085(02)00547-2
  15. Sah, H., 2000. Ethyl formate æ alternative dispersed solvent useful in preparing PLGA microspheres. Int. J. Pharm. 195, 103-113. https://doi.org/10.1016/S0378-5173(99)00379-8
  16. Sah, H., Lee, B. J., 2006. Development of new microencapsulation techniques useful for the preparation of PLGA microspheres. Macromol. Rapid Comm. 27, 1845-1851. https://doi.org/10.1002/marc.200600531
  17. Schaefer, M.J., Singh, J., 2001. Effect of additives on stability of etoposide in PLGA microspheres. Drug Dev. Ind. Pharm. 27, 345-350. https://doi.org/10.1081/DDC-100103734
  18. Taylor, P.J., Brown, S.R., Cooer, D.P., Salm, P., Morris, M.R., Pillans, P.I., Lynch, S.V., 2005. Evaluation of 3 internal standards for the measurement of cyclosporine by HPLC-mass spectrometry. Clin. Chem. 51, 1890-1893. https://doi.org/10.1373/clinchem.2005.055160
  19. Wu, Z., Zhang, C., Yang, C., Zhang, X., Wu, E., 2000. Simultaneous quantitative determination of norgestrel and progesterone in human serum by high-performance liquid chromatography-tandem mass spectrometry with atmospheric pressure chemical ionization. Analyst 125, 2201-2205. https://doi.org/10.1039/b005631f