• Title/Summary/Keyword: Dissolved precipitates

Search Result 84, Processing Time 0.024 seconds

Quantitative Analysis of the Amount of Aluminium Dissolved in Phosphoric Acid

  • Moon, Sungmo;Yang, Cheolnam
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.4
    • /
    • pp.231-236
    • /
    • 2017
  • The present work addresses how to measure the amount of dissolved aluminum in phosphoric acid, based on volumetric and gravimetric measurements of the precipitates formed by reaction between the $H_3PO_4$ solution containing dissolved aluminum ions and 10 % KF solution. The volume of the precipitates increased with dilution of the dissolved aluminum-containing $H_3PO_4$ solution up to 1/4 dilution above which it decreased with further dilution. The lowered amounts of the precipitates at low dilution less than 1/4 and high dilution more than 1/4 are attributed to high acidity of the solution and decreased amount of dissolved aluminum in the solution, respectively. Volumetric measurement of the amount of precipitates was found not to be very reliable with the experiments, while weight measurement of the precipitates after drying for 80 min at $60^{\circ}C$ appeared to be very reproducible. In the present work, it is suggested that the amount of Al dissolved in 85 % $H_3PO_4$ solution can be calculated by multiplying 50 to the weight of precipitate obtained by reacting 8 ml of 1/4 diluted $H_3PO_4$ solution containing dissolved aluminum ions with 6 ml of 10 % KF solution.

Characterization of Natural Organic matter by Rapid Mixing Condition (급속교반조건에서 Alum 응집제의 가수분해종 분포특성과 유기물특성변화)

  • Song, Yu-Kyung;Jung, Chul-Woo;Son, Hee-Jong;Sohn, In-Shik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.559-571
    • /
    • 2006
  • The overall objective of this research was to find out the interrelation of coagulant and organic matter during rapid mixing process and to identify the change of organic matter by mixing condition and to evaluate the effect of coagulation pH. During the coagulation, substantial changes in dissolved organics must be occurred by coagulation due to the simultaneous formation of microflocs and NOM precipitates. Increase in the organic removal efficiency should be mainly caused by the removal of microflocs formed during coagulant injection. That is, during the mixing period, substantial amount of dissolved organics were transformed into microflocs due to the simultaneous formation of microflocs and NOM precipitates. The results also showed that 40 to 80% of dissolved organic matter was converted into particulate material after rapid mixing process of coagulation. During the rapid mixing period, for purewater, formation of dissolved Al(III) (monomer and polymer) constant by rapid mixing condition, but for raw water, the species of Al hydrolysis showed different result. During the rapid mixing period, for high coagulant dose, Al-ferron reaction increases rapidly. At A/D(Adsorption and Destabilization) and sweep condition, both $Al(OH)_3(s)$ and dissolved Al(III) (monomer and polymer) exist, concurrent reactions by both mechanism appear to cause simultaneous precipitation.

Characteristic of Al(III) Hydrosis Species at Rapid Mixing Condition (급속흔화조건에서 AI(III) 가수분해종의 분포특성)

  • Jung, Chul-Woo;Son, Jung-Gi;Shon, In-Shik;Kang, Lim-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.128-136
    • /
    • 2004
  • The overall objective of this research was to find out the role of rapid mixing conditions in the species of hydrolyzed Al(III) formed by different Al(III) coagulants. When an Al(III) salt is added to water, monomers, polymers, or solid precipitates may form. Different Al(III) coagulants (alum and PACl) show to have different Al species distribution over a rapid mixing condition. During the rapid mixing period, for alum, formation of dissolved Al(III) (monomer and polymer) increases, but for PACl, precipitates of $Al(OH)_{3(s)}$. increases rapidly. Also, for alum, higher mixing speed favoured Al(III) polymers formation over precipitates of $Al(OH)_{3(s)}$ but for PACl, higher mixing speed formed more precipitates of $Al(OH)_{3(s)}$. At A/D and sweep condition, both $Al(OH)_{3(s)}$ and dissolved Al(III) (monomer and polymer) exist, concurrent reactions by both mechanism appear to cause simultaneous precipitation.

Formation Mechanism of SnO Plate (판상 SnO의 형성 메커니즘)

  • Kim, Byeung Ryeul;Park, Chae Min;Lee, Woo Jin;Kim, Insoo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1084-1089
    • /
    • 2010
  • This study elucidates the formation mechanism of SnO plate observed during the precipitation reaction of a $SnCl_2$ aqueous solution. $Sn_{21}Cl_{16}(OH)_{14}O_6$ and $Sn_6O_4(OH)_4$ precipitates was formed at pH=3~5 and at pH=11, respectively. When the pH was in the range of 11.5~12.5, the $Sn_6O_4(OH)_4$ precipitates dissolved into $HSnO_2{^-}[Sn_6O_4(OH)_4+4OH^-={6HSnO_2{^-}+2H^+]$ and dissolved $HSnO_2{^-}$ ions reprecipitated to SnO plate $[HSnO_2{^-}+H^+=SnO+H_2O]$. The $Sn_6O_4(OH)_4$ precipitates completely transformed into SnO plate through a repeated process of dissolution-precipitation in the range of pH=11.5~12.5.

Geochemical Reaction Processes and Controls on the Coal Mine Drainage using Pilot-scale Inclined Clarifiers (Pilot 규모의 경사판 침전지 시험을 통한 국내 석탄광산배수내 부유물질의 지구화학적 반응특성 및 조정영향)

  • Lee, SangHoon;Oh, Minah;Lee, Jai-Young;Kwon, Eunhye;Kim, Doyoung;Kim, DukMin
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.73-80
    • /
    • 2013
  • Fine suspended solids from coal mine drainage were treated in the treating plant, using two different pilot-scale inclined clarifiers: radial and lamella types. Suspended solids in the mine drainage were monitored along with other geochemical factors, and metal contents. Fe and Mn are the main chemical components in the drainage, which exist predominantly as total metal forms, whereas dissolved portion is negligible. The raw mine drainage is subject to physical and chemical treatment using $CaCO_3$ and NaOH, therefore the suspended solids are thought to be composed of Fe and Mn precipitates, possibly $Fe(OH)_3$, along with carbonate precipitates. The elemental composition of precipitates are confirmed by SEM-EDS analysis. As nearly all the dissolved ions were precipitated in the primary process by $CaCO_3$, no further aeration or prolonged oxygenation are of necessity in this plant. Adoption of inclined clarifier proved to be effective in treating fine suspended solids in the current plant. Successful application of the inclined clarifier will also be beneficial to improve the current treating process by excluding the current application of chemical agent in the first stage. The final effluents from the pilot plant meet the national standards and the low dissolved Fe and Mn contents are expected not to cause secondary precipitation after discharge.

Carbon Dioxide Capture and Carbonate Synthesis via Carbonation of KOH-Dissolved Alcohol Solution (KOH-알코올 용액의 탄산화를 통한 이산화탄소 포집 및 탄산염 합성)

  • Kim, Eung-Jun;Han, Sang-Jun;Wee, Jung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.11
    • /
    • pp.597-606
    • /
    • 2015
  • This work investigates the carbonation of KOH-dissolved methanol and ethanol solution systems carried out for $CO_2$ fixation. Potassium methyl carbonate (PMC) and potassium ethyl carbonate (PEC) were synthesized during the reaction in each solution as the solid powder, and they were characterized in detail. The amount of $CO_2$ chemically absorbed to produce the PMC and PEC precipitates were calculated to be 97.90% and 99.58% of their theoretical values, respectively. In addition, a substantial amount of $CO_2$ was physically absorbed in the solution during the carbonation. PMC precipitates were consisted of the pure PMC and $KHCO_3$ with the weight ratio of 5:5, respectively. PEC precipitates were also mixture of the pure PEC and $KHCO_3$ with the weight ratio of 8:2, respectively. When these two precipitates were dissolved in excess water, methanol and ethanol were regenerated remaining solid $KHCO_3$ in the solutions. Therefore, the process has the potential to be one of the efficient options of CCS and CCU technologies.

The effect of electrolytes on the preparation of an extraction replica in 3 wt. % Si steel (3% Si 강의 추출복제시료제조에 미치는 전해액의 영향)

  • Park, Shin-Hwa;Kim, Jae-Kwan;Kim, Jae-Nam;An, Byung-Ryang;Lee, Do-Hyung
    • Applied Microscopy
    • /
    • v.23 no.2
    • /
    • pp.1-10
    • /
    • 1993
  • The effect of electrolyte on the extraction replicas of the precipiates in 3% Si steel was investigated. Three Kinds of electrolyte, 2% Nital solution (2% nitric acid+methanol; acid solution),, Sodium Citrate solution (5% sodiumcitrate+1% KBr+0.5KI+$H_{2}O$; aqueous neutral solution) and 10% AA solution (10% acetylacetone+ 1% tetramethylammoniumchloride+methanol; non-aqueous neutral solution), were compared. The preciptiates in 3% Si steel were dissolved in 2% Nital, but they were not dissolved in the Sodium Citrate and 10% AA solution. In Sodium Citrate solution, however, large second artifacts were introduced during sample preparation. Therefore 10% AA solution was found to be most useful for the preparation of extraction replica. The electrolysis condition of a matrix and precipitates were also checked by the measurement of potential-current curve in 10% AA solution. The matrix was electrolyzed at -400mV with respect to SCE(Saturated Calomel Electrode). In contrats precipitates were electrolyzed above 300mV. Precipitates were respected to be stable in 10% AA solution in the range of $-380mV{\sim}-300mV$ usually used to prepare extraction replicas.

  • PDF

Environmental Mineralogy on the Mg Effects of Chiller Precipitates (칠러(Chiller) 냉각장치 침전물에 미치는 마그네슘의 영향에 관한 환경 광물학적 연구)

  • Kim Yoon Young;Chang Sea Jung;Jang Yun Deuk;Kim Jeong Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.117-125
    • /
    • 2005
  • It is common to find lots of organic and inorganic precipitates inside of industrial cooling system. Analytical instruments including ICP-AES, IC, XRD, and SEM were used to investigate the effects of application of Mg on reaction among coolant, precipitates and suspended matters within chiller system. Magnesium (Mg) has a decreasing effect on total dissolved material in the coolant suggesting a significant improvement of quality of coolant. Disappearance of most organic materials in the cooling devices also suggests an inhibitive effect on the growth of organic matters.

Effect of Austenitizing Temperatures on Corrosion Resistance of 420J2 Stainless Steel (420J2 강의 내식성에 미치는 오스테나이트화 온도의 영향)

  • Kim, H.J.;Jung, B.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.3
    • /
    • pp.150-156
    • /
    • 2008
  • The effects of austenitizing temperature in a range of $1000{\sim}1150^{\circ}C$ on the corrosion resistance in 420J2 stainless steel tempered at $150^{\circ}C$ were investigated by an electrochemical uniform corrosion test in a solution of 0.5M $H_2S0_4$. Pitting test and DL-EPR test for intergranular corrosion were carried out in a solution of 3.5% NaCl and 0.5M $H_2S0_4$ + 0.01 M KSCN respectively. In uniform corrosion test, specimens austenitized below $1100^{\circ}C$ showed similar corrosion current density and passive current density, whereas specimens austenitized at $1150^{\circ}C$ showed a little higher values. Pitting potential slightly increased with an increase of austenitizing temperature. The degree of sensitization, DOS, also slightly increased with an increase of austenitizing temperature, reaching the highest degree at $1150^{\circ}C$. It was expected that the increase of DOS was due to the larger grain size rather than the dissolved precipitates in the matrix.

Investigation of Corrosion Minerals from the Remediation for TCE-Contaminate d Groundwater (TCE로 오염된 지하수 정화시 부식 광물에 대한 연구)

  • Moon, Ji-Won;Moon, Hi-Soo;Yungoo Song;Kang, Jin-Kyoo;Yul Roh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.107-123
    • /
    • 2003
  • The objective of this study was to investigate mineral precipitates, which derived from the zero valent iron (ZVI) corrosion during TCE dechlorination and to find the controlling factors in mineral precipitates. A series of column experiemnts were conducted to evaluate the location of ZVI and the effects of electrode arrangements in electro-enhanced permeable reactive barrier (E2PRB) systems. Based on mineralogical study, ZVI samples near the influent port had more lepidocrocite, ferrihydrite or Fe (oxy)hydroxide, and (phospho)siderite while backward samples had more akaganeite, magnetite/maghemite, and intermediate green rust (GR) I and GR II. A suite of mineral distribution was preferabley related to the dissolved oxygen and the increased pH. Controlling factors of mineral precipitates in an E2PRB system were found to be (1) pH, (2) dissolved oxygen, (3) the types of Fe intermediates, and (4) anionic species to form complex strongly.