Browse > Article
http://dx.doi.org/10.3365/KJMM.2010.48.12.1084

Formation Mechanism of SnO Plate  

Kim, Byeung Ryeul (Department of Metallurgical Engineering, Dong-A University)
Park, Chae Min (Department of Metallurgical Engineering, Dong-A University)
Lee, Woo Jin (Department of Metallurgical Engineering, Dong-A University)
Kim, Insoo (Department of Metallurgical Engineering, Dong-A University)
Publication Information
Korean Journal of Metals and Materials / v.48, no.12, 2010 , pp. 1084-1089 More about this Journal
Abstract
This study elucidates the formation mechanism of SnO plate observed during the precipitation reaction of a $SnCl_2$ aqueous solution. $Sn_{21}Cl_{16}(OH)_{14}O_6$ and $Sn_6O_4(OH)_4$ precipitates was formed at pH=3~5 and at pH=11, respectively. When the pH was in the range of 11.5~12.5, the $Sn_6O_4(OH)_4$ precipitates dissolved into $HSnO_2{^-}[Sn_6O_4(OH)_4+4OH^-={6HSnO_2{^-}+2H^+]$ and dissolved $HSnO_2{^-}$ ions reprecipitated to SnO plate $[HSnO_2{^-}+H^+=SnO+H_2O]$. The $Sn_6O_4(OH)_4$ precipitates completely transformed into SnO plate through a repeated process of dissolution-precipitation in the range of pH=11.5~12.5.
Keywords
oxide; chemical synthesis; precipitates; X-ray diffraction; reaction mechanism;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 J. H. Yoon, H. J. Lee, and J. S. Kim, Kor. J. Met. Mater. 48, 169 (2010).   DOI   ScienceOn
2 C. S. Moon, H. Kim, G. Auchterlonie, J. Drennan, and J. Lee, Sensor and Actuators B 31, 556 (2008).
3 E. Kuantama, D. Han, Y. Sung, J. Song, and C. Han, Thin Solid Film 517, 4211 (2009).   DOI   ScienceOn
4 N. Li and C. Martin, J. Electrochem. Soc. 148, A164 (2001).   DOI   ScienceOn
5 Z. Jia, L. Zhu, G. Liao, Y. Yu, and Y. Tang, Solid State Communications 132, 79 (2004).   DOI   ScienceOn
6 D. Aurbach, A. Nimberger, B. Markovsky, E. Levi, E. Sominski, and A. Gedanken, Chem. Mater. 14, 4155 (2002).   DOI   ScienceOn
7 T. Krishnakumar, N. Pinna, K. P. Kumari, K. Perumal, and R. Jayaprakash, Mater. Lett. 62, 3437 (2008).   DOI   ScienceOn
8 H. Uchiyama and H. Imai, Langmuir 24, 9038 (2008).   DOI   ScienceOn
9 S. Majumdar, S. Chakraborty, P. S. Devi, and A. Sen, Mater. Lett. 62, 1249 (2008).   DOI   ScienceOn
10 Z. R. Dai, Z. W. Pan, and Z. L. Wang, J. Am. Chem. Soc. 124, 8673 (2002).   DOI   ScienceOn
11 X. Q. Pan and L. Fu, J. Electroceram. 7, 35 (2001).   DOI   ScienceOn
12 G. Kozma, A. Kukovecz, and Z. Konya, J. Mol. Struct. 834, 430 (2007).   DOI   ScienceOn
13 M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solution, 475, Pergamon Press, Oxford (1966).
14 F. I. Pires, E. Joanni, R. Savu, and M. A. Zaghete, Mater. Lett. 62, 239 (2008).   DOI   ScienceOn
15 K. Men, J. Ning, Q. Dai, D. Li, B. Liu, W. W. Yu, and B. Zou, Colloids and Surfaces A: Physicochem. Eng. Aspects 363, 30 (2010).   DOI   ScienceOn
16 W. S. Jun, P. S. Yun, and E. C. Lee, Hydrometallurgy 73, 71 (2004).   DOI   ScienceOn
17 D. S. Seo, H. Kim, and J. K. Lee, J. Crystal Growth 275, e2371 (2005).   DOI   ScienceOn
18 F. B. Zhang and H. L. Li, Mater. Sci. Eng. C 27, 80 (2007).   DOI   ScienceOn
19 S. Pavasupree, Y. Suzuki, S. Yoshikawa, and R. Kawahata, J. Solid State Chemistry 178, 3110 (2005).   DOI   ScienceOn
20 L. S. Y. Lee and F. Lawson, Hydrometallurgy 23, 23 (1989).   DOI   ScienceOn