• Title/Summary/Keyword: Dissolved oxygen sensor

Search Result 49, Processing Time 0.025 seconds

Development of On-line Water Quality Monitoring System (온라인 수질 감시 시스템의 개발)

  • Kim, Jae-Chul;Lee, Jae-Yun;Park, Jong-Sik;Kwon, Woo-Hyen;Kim, Sung-Ho;Lee, Chan-Won
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.75-85
    • /
    • 1996
  • Real time water quality monitoring system in a large area has been developed. The system is hierarchically composed of CCMS(Central Control and Monitoring System), data loggers and water pollution measuring instruments, which enable systematic and efficient data collection and management. Also in this work we designed and constructed the instruments for measuring basic elements in water quality such as salinity, electrical conductivity, temperature, dissolved oxygen and the amount of coli in water.

  • PDF

Fabrication of Clark-type Sensor for Measuring Dissolved Oxygen Using FEP Membrane (FEP 멤브레인을 이용한 용존 산소 측정용 Clark-type 센서 제작)

  • Park, Jung-Il;Chang, Jong-Hyeon;Choi, Myung-Ki;Lee, Dong-Young;Kim, Young Mi;Pak, Jung Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.276-277
    • /
    • 2007
  • 본 논문에서는 미량의 세포를 포함한 용액 내에서 세포의 산소호흡량을 측정하기 위해 FEP(Fluorinated Ethylene Propylene)를 멤브레인으로 사용한 Clark-type 센서를 제안하였다. 제안된 Clark-type 센서는 3-전극 시스템을 구성하는 유리 기판, 산소를 선택적으로 투과 시키는 FEP 멤브레인과 세포를 담을 수 있는 PDMS reservoir로 구성된다. 산소 센서의 3-전극 시스템에서 작업 전극과 상대 전극으로는 Au, 기준 전극으로는 Ag/AgCl을 사용하였다. 기준 전극은 Ag 전극을 0.1M KCl/Tris-HCl 용액에서 chlorination하여 표면에 AgCl이 형성되도록 하였고, OCP(Open Circuit Potential) test를 수행한 결과 2시간 동안 안정적인 OCP 특성을 보여 좋은 내구성을 가짐을 확인하였다. 또한, 산소 유무에 따른 cyclic voltammetry 그래프의 차이를 확인하고, amperometry로 감도 및 반응 시간, 선형성을 측정/분석하였다. 제작된 산소 센서는 40초의 90% 반응 시간과 0.994의 아주 좋은 선형 상관계수를 보여주었다.

  • PDF

An Implementation of Feeding Time Detection System for Smart Fish Farm Using Deep Neural Network (심층신경망을 이용한 스마트 양식장용 사료 공급 시점 감지 시스템 구현)

  • Joo-Hyeon Jeon;Yoon-Ho Lee;Moon G. Joo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.1
    • /
    • pp.19-24
    • /
    • 2023
  • In traditional fish farming way, the workers have to observe all of the pools every time and every day to feed at the right timing. This method causes tremendous stress on workers and wastes time. To solve this problem, we implemented an automatic detection system for feeding time using deep neural network. The detection system consists of two steps: classification of the presence or absence of feed and checking DO (Dissolved Oxygen) of the pool. For the classification, the pretrained ResNet18 model and transfer learning with custom dataset are used. DO is obtained from the DO sensor in the pool through HTTP in real time. For better accuracy, the next step, checking DO proceeds when the result of the classification is absence of feed several times in a row. DO is checked if it is higher than a DO reference value that is set by the workers. These actions are performed automatically in the UI programs developed with LabVIEW.

Implementation of an Automated In-line Water Quality Measurement System of Recirculation Fish Farm with IoT (IoT에 의한 순환여과식 양식장 자동 수질 측정 시스템 구현)

  • Kim, Sun-Woo;Choi, Yeon-Sung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.3
    • /
    • pp.477-484
    • /
    • 2017
  • In the conventional recirculation fish farms, there is a lot of difficulties due to lack of professional manpower and high reliance on imported measurement equipment. In this paper, we implement an automatic water quality measurement system which can measure the pollution degree in a water tank of fish farms using an optical sensor(pH, DO) with the IoT technology. The problem with existing systems is that the fish tank should be checked by means of human, or put the measuring equipment into the water tank of fish farms and measurement directly. But, it has a bad influence on the growth of fish. In this paper, we propose a method of indirect measurement without immersing the measurement equipment in a water tank of fish farm and develop a sustainable measurement system in an environment containing salt and lots of pollutants without affecting the growth of fish within the water tank of fish farms.

Implementation and Performance Evaluation of Environmental Data Monitoring System for the Fish Farm (양식장 환경 데이터 모니터링 시스템의 구현 및 성능 평가)

  • Wahyutama, Aria Bisma;Hwang, Mintae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.743-754
    • /
    • 2022
  • This paper contains the results of the development and performance evaluation of the environmental data monitoring system for the fish farm. For the hardware development, the analogue sensor is used to collect dissolved oxygen, pH, salinity, and temperature of the fish farm water, and the digital sensor is used for collecting ambient temperature, humidity, and location information via a GPS module to be sent to cloud-based Firebase DB. A set of LoRa transmitters and receivers is used as a communication module to upload the collected data. The data stored in Firebase is retrieved as a graph on a web and mobile application to monitor the environmental data changes in real-time. A notification will be delivered if the collected data is outside the determined optimal value. To evaluate the performance of the developed system, a response time from hardware modules to web and mobile applications is ranging from 6.2 to 6.85 seconds, which indicates satisfactory results.

Self-diagnosis Algorithm for Water Quality Sensors Based on Water Quality Monitoring Data (수질 모니터링 데이터 기반의 수질센서 자가진단 알고리즘)

  • HongJoong Kim;Jong-Min Kim;Tae-Hyung Kang;Gab-Sang Ryu
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.41-47
    • /
    • 2023
  • Today, due to the increase in global population growth, the international community is discussing solving the food problem. The aquaculture industry is emerging as an alternative to solving the food problem. For the innovative growth of the aquaculture industry, smart fish farms that combine the fourth industrial technology are recently being distributed, and full-cycle digitalization is being promoted. Water quality sensors, which are important in the aquaculture industry, are electrochemical portable sensors that check water quality individually and intermittently, making it impossible to analyze and manage water quality in real time. Recently, optically-based monitoring sensors have been developed and applied, but the reliability of monitoring data cannot be guaranteed because the state information of the water quality sensor is unknown. Therefore, this paper proposes an algorithm representing self-diagnosis status such as Failure, Out of Specification, Maintenance Required, and Check Function based on monitoring data collected by water quality sensors to ensure data reliability.

Overview of Technology for Fixation of Carbon Dioxide Using Microalgae (미세조류를 이용한 이산화탄소 고정화 기술 현황)

  • Jeon, Seon-Mi;Kim, In Hae;Ha, Jong-Myung;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.145-150
    • /
    • 2008
  • In this work we have studied the antifouling properties of the hydrophobic sol-gel modified sensing membrane and its optical properties for sensor application. E. coli JM109, B. cereus 318 and P. pastoris X-33 were cultivated in confocal cultivation dishes with glass surface, respectively. The glass surface was coated with the hydrophobic sol-gels prepared by the dimethoxy-dimethyl-silane (DiMe-DMOS) and tetramethyl-orthosilicate (TMOS). After cultivation, microorganisms adhered on the surface coated with sol-gels and glass surface were dyed by gram-staining method and the numbers of microorganisms were analyzed based on the image data of the scanning electronic microscope (SEM). A great number of microorganisms, about $2{\sim}3{\times}10^4/mm^2$, was adhered on the glass surfaces which no hydrophobic sol-gels were coated. But, the antifouling effect of the hydrophobic sol-gels was large, that microorganisms of less than $200{\sim}300/mm^2$ were adhered on the coated glass surface. The performance of the sensing membranes for detection of pH and dissolved oxygen was enhanced by recoating the light insulation layer prepared with the mixture of the hydrophobic sol-gel and graphite particles.

A Study on Microorganisms Antifouling and Optical Properties of the Sensing Membrane Surface Modified by Hydrophobic Sol-gels (소수성 졸-겔로 개질된 센서 막 표면의 미생물 비점착과 광학 특성 연구)

  • Kim, Sun-Yong;Rhee, Jong Il
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.222-227
    • /
    • 2008
  • In this work we have studied the antifouling properties of the hydrophobic sol-gel modified sensing membrane and its optical properties for sensor application. E. coli JM109, B. cereus 318 and P. pastoris X-33 were cultivated in confocal cultivation dishes with glass surface, respectively. The glass surface was coated with the hydrophobic sol-gels prepared by the dimethoxy-dimethyl-silane (DiMe-DMOS) and tetramethyl-orthosilicate (TMOS). After cultivation, microorganisms adhered on the surface coated with sol-gels and glass surface were dyed by gram-staining method and the numbers of microorganisms were analyzed based on the image data of the scanning electronic microscope (SEM). A great number of microorganisms, about $2{\sim}3{\times}10^4/mm^2$, was adhered on the glass surfaces which no hydrophobic sol-gels were coated. However, the antifouling effect of the hydrophobic sol-gels was large, that microorganisms of less than $200{\sim}300/mm^2$ were adhered on the coated glass surface. The performance of the sensing membranes for detection of pH and dissolved oxygen was enhanced by recoating the light insulation layer prepared with the mixture of the hydrophobic sol-gel and graphite particles.

Determination of Total CO2 and Total Alkalinity of Seawater Based on Thermodynamic Carbonate Chemistry (해수중의 총이산화탄소와 총알칼리도 분석을 위한 탄산염 화학 이론 및 측정방법)

  • Mo, Ahra;Son, Juwon;Park, Yongchul
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • To evaluate accuracy and precision of determination of total alkalinity ($Alk_T$) and carbon dioxide ($TCO_2$) derived from present study, experiment was applied with $CO_2$ CRM (Batch 132, Scripps Institution of Oceanography; $Alk_T=2229.24{\pm}0.39{\mu}mol/kg$, $TCO_2=2032.65{\pm}0.45{\mu}mol/kg$). As the result, average concentration of $Alk_T$ and $TCO_2$ was $2354.09{\mu}mol/kg$ (~5.6% difference with $CO_2$ CRM) and $2089.60{\mu}mol/kg$ (~2.3% difference with $CO_2$ CRM), respectively. For previous method (Gran Titration) by addition $NaHCO_3$ to deionized water($Alk_T$ $2023.33{\mu}mol/kg$), average concentration was $2193.39{\mu}mol/kg$ (sd=57.15, n=7). Whereas, average concentration was $2017.02{\mu}mol/kg$ (sd=10.98, n=7) for the present study. Recovery yield experiments of total alkalinity in deionized water and seawater were implemented by addition of $NaHCO_3$. The recovery yield of deionized water in the range 0 to $4952.39{\mu}mol/kg$ was 100.8% ($R^2$=0.999), and seawater in the range 0 to $2041.32{\mu}mol/kg$ was 102.3% ($R^2$=0.999). Comparison of $pCO_2$ sensor (PSI $CO_2-Pro^{TM}$) with present method showed very meaningful correlation coefficient ($R^2$=0.977) in the range of 427 to $705{\mu}atm$ and 9.16 to $15.24{\mu}mol/kg$ throught elapsed time for two weeks. Field experiment of diurnal variation of total carbon dioxide was accomplished at Sachon harbor in the coastal waters of East Sea of Korea. Concentration of $Alk_T$ and $TCO_2$ was increased during night, and decreased during daylight hours. The results showed mirror type between $TCO_2$ and dissolved oxygen, which was attributable to photosynthesis and respiration of phytoplankton. Also, open ocean field study was performed to obtain vertical profile of $Alk_T$ and $TCO_2$ in C-C zone (Clarion-Clipperton Fracture Zone), Northeastern Pacific. Average concentrations of $Alk_T$ in the surface mixed layer (0~60 m) and deeper layer below 200 m were $2422.38{\mu}mol/kg$ (sd=78.73, n=20) and $2465.87{\mu}mol/kg$ (sd=57.68, n=103), respectively. And average concentrations of $TCO_2$ were $2134.47{\mu}mol/kg$ (sd=65.4, n=20) and $2431.87{\mu}mol/kg$ (sd=65.02, n=103) in the same depth ranges such as $Alk_T$. Vertical distributions of $Alk_T$ and $TCO_2$ concentrations tended to increase with depth, and analyzed concentrations showed slightly higher than those of previous studies in this area.