• Title/Summary/Keyword: Dissolved organic nitrogen

Search Result 157, Processing Time 0.034 seconds

Preferential Decomposition of Nitrogen during Early Diagenesis of Sedimentary Organic Matter (퇴적물 내 유기물의 초기 속성 작용에 나타난 유기 질소의 선택적 분해)

  • Han, Myung-Woo;Lee, Khang-Hyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.2
    • /
    • pp.63-70
    • /
    • 2001
  • Changes in concentrations of dissolved oxygen, ammonia, nitrate, pH, Fe and Mn were monitored from the laboratory incubation of an benthic chamber. The extent of sedimentary organic carbon and nitrogen decomposition was quantified by applying the concentration data to the chemical reaction equations of early diagenesis. The patterns of the concentration changes, observed during the 237 hr long incubation experiment, made it possible to divide the entire experiment period into four characteristic sub-periods (0-9 hr, 9-45 hr, 45-141hr, 141-237 hr). C/N ratio, estimated for each sub-period, was 6.63, 1.49, 0.81 and 0.02, respectively. This sequential decrease in C/N ratio suggests that during the incubation experiment dissolved nitrogen species diffuse more out of the sediment than dissolved carbon species. Greater diffusion of nitrogen indicates the preferential decomposition of organic nitrogen during early diagenesis of sedimentary organic matter. Comparison of the concentration data (sedimentary organic carbon and nitrogen, porewater organic carbon and ammonia)between the sediment pre and post incubation also indicates the preferential decomposition of nitrogen during early diagenesis of sedimentary organic matter.

  • PDF

Removal Characteristics of COD and Nitrogen by Aerated Submerged Bio-film(ASBF) Reactor (ASBF 생물반응기를 이용한 COD 및 질소 제거특성)

  • Choi, Young-Ik;Jung, Byung-Gil;Son, Hee-Jong;Sung, Nak-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.997-1002
    • /
    • 2007
  • The objectives of this research are to remove dissolved organic matter and nitrogen compounds by using aerated submerged bio-film(ASBF) reactors in batch systems and improve understanding of dissolved organic matter and nitrogen compounds removal rates with dynamic relationships between heterotrophic and autotrophic bacteria in the fixed-film reactor. This research explores the possibility of enhancing the performance of shallow wastewater treatment lagoons through the addition of specially designed structures. These structures are designed to encourage the growth of a nitrifying bacterial bio-film on a submerged surface. Specially, the effects of cold temperatures on the dissolved organic matter and ammonia nitrogen performance of the ASBF pilot plant was investigated for the batch system. It is anticipated thai the ASBF would be used for a design of biological treatment for removing of dissolved organic matter and nitrogen compounds in new wastewater treatment plants as well as existing wastewater treatment plants.

Removal of Dissolved Organic Matters in Drinking Water by GAC adsorption using RSSCT (RSSCT를 이용한 GAC의 상수원수 내 용존유기물질 제거)

  • Kim, Young Il;Bae, Byung Uk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.5
    • /
    • pp.727-736
    • /
    • 2006
  • Granular activated carbon (GAC) has been identified as a best available technology (BAT) by the United States Environmental Protection Agency (USEPA) for removal disinfection by-product (DBP) precursors, such as dissolved organic carbon (DOC) and dissolved organic nitrogen (DON). Rapid small-scale column test (RSSCT) were used to investigate four types of carbon (F400, Norit1240, Norit40S, and Aquasorb1500) for their affinity to absorb natural organic matter (NOM). DOC, $UV_{254}$, and Total dissolved nitrogen (TON) concentrations were measured in the column effluent to track GAC breakthrough. DOC and $UV_{254}$ breakthrough occurred at around 3500 bed volumes (BVs) of operation for all GACs investigated. The $UV_{254}$ breakthrough curves showed 33% to 48% at 8000 BVs, when the DOC was 48% to 65%. All GACs showed greater removal in DOC than $UV_{254}$. The NORIT1240 GAC was determined to have the highest adsorption capacity for DOC and $UV_{254}$. The removal of nitrate (NOTN) had not broken through over BVs. The initial TON breakthrough curves were started around 50%, when the DOC breakthrough was only 10 % at 500 BVs. The curves were gradually increased after 3500 BVs and approximately 69% through 81% of TON breakthrough occurred at 8000 BVs. All of the GACs were able to remove TON, in the case of this investigation the majority of the TON was present as DON. Because nitrate nitrogen was seldom removed and ammonium nitrogen ($NH_3-N$) was not detected in the effluent from RSSCTs even though raw water. The carbon usage rate of DOC was from 2 to 6 times less than that of TON. The NORIT1240 GAC demonstrated the best performance in terms of DOC removal, while the F400 GAC was best in terms of TON removal. Excitation emission matrix(EEM) analysis was used to show that GAC adsorption successfully removed most of Humic-like DOC and Fulvic-like DOCs. However, soluble microbial product(SMP)-like DOC in the absence of raw water were detected in the NORIT40S and Aquasorb1500 GAC. The authors assumed that this results is due probably to the part of GAC in the RSSCT which was converted into biological activated carbon(BAC). To compare with organics removal by GAC according to preloading, the virgin GACs had readily accessible sites that were adsorbed DOC more rapidly than preloaded GACs, but the TDN removal had not showed differences between those GACs.

A Mathematical Model Development for the Nitrification-Denitrification Coupled Process

  • ;;T. Prabhakar Clement
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.430-433
    • /
    • 2003
  • Nitrogen pollution in urban and rural groundwater is a common problem and poses a major threat to drinking water supplies based on groundwater. In this work, the kinetics of nitrification-denitrification coupled reactions are modeled and new reaction modules for the RT3D code describing the fate and transport of nitrogen species, dissolved oxygen, dissolved organic carbon, and biomass are developed and tested. The proposed nitrogen transformations and transport model showed very good match with the results of other public codes.

  • PDF

Formation of Organic Chloramines during Monochloramination of Natural Organic Matters (천연유기물과 모노클로라민의 반응시 유기성 클로라민 생성)

  • Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.9
    • /
    • pp.604-608
    • /
    • 2014
  • This study investigated influence of dissolved organic nitrogen (DON) in natural organic matter (NOM) on the formation of organic chloramines upon monochloramination. Ratios of dissolved organic carbon (DOC) to DON of the 16 NOM isolates ranged from 7 to 47 mg-C/mg-N. Levels of organic chloramines maxed in 24 hours at $0.16mg-Cl_2/mg-N$ in average. The yields were relatively lower, but decay of organic chloramines were slower than those upon chlorination. Organic chloramines formed upon monochloramination decreased by 56% in average in 120 h. NOM with lower DOC/DON ratios formed more organic chloramines. NOM fractions such as hydrophobic, hydrophilic, transphilic, and colloidal did not significantly impact formation of organic chloramines. As the monochloramine doses increased, more organic chloramines were produced ($R^2=0.91$). Overestimation of disinfection capacity due to the formation of organic chloramines may not be concerns for monochloramine systems since only 6% of monochloramine could be converted to organic chloramines upon monochloramination of NOM.

Patterns in solute chemistry of six inlet streams to Lake Hövsgöl, Mongolia

  • Puntsag, Tamir;Owen, Jeffrey S.;Mitchell, Myron J.;Goulden, Clyde E.;McHale, Patrick J.
    • Journal of Ecology and Environment
    • /
    • v.33 no.4
    • /
    • pp.289-298
    • /
    • 2010
  • A number of characteristics of the Lake H$\ddot{o}$vsg$\ddot{o}$l watershed, such as the lake's location at the edge of the Central Asian continuous permafrost zone, provide a unique opportunity to evaluate possible anthropogenic impacts in this remote area in northern Mongolia. In this study, we compared stream solute concentrations in six sub-watersheds in the Lake H$\ddot{o}$vsg$\ddot{o}$l watershed. Water samples were collected during the summer months between 2003 and 2005. Concentrations of $Cl^-$ ranged from 9.8 to $51.3\;{\mu}mol/L$; average nitrate concentrations were very low and ranged from undetectable to $1.1\;{\mu}mol/L$ and average ${SO_4}^{2-}$ concentration at sampling stations with minimal animal grazing ranged from 66 to $294\;{\mu}mol/L$. Average dissolved organic carbon (DOC) concentrations ranged from 642 to $1,180\;{\mu}mol$ C/L. We did not find statistically significant differences in DOC concentrations among the six streams, although DOC concentrations tended to be higher in the two northernmost streams, possibly related to differences in the active layer above the permafrost. Dissolved organic nitrogen (DON) concentrations were correlated with DOC concentration, and followed the same spatial pattern as those for DOC. In streams in this remote watershed, total dissolved nitrogen was made up of mostly organic N, as has been found for other regions distant from anthropogenic N sources. Overall, these results suggest that future research on the dynamics of DOC and DON in this watershed will be especially insightful in helping to understand how changes in climate and land use patterns will affect transformations, retention, and export of dissolved organic matter within these sub-watersheds in the Lake H$\ddot{o}$vsg$\ddot{o}$l region.

Survival Strategy of Dominant Diatom Chaetoceros debilis and Leptocylindrus danicus as Southwestern parts of East Sea - The availability of Dissolved Organic Nitrogen under Dissolved Inorganic Nitrogen-limited Environments (동해 남서해역에서 우점 규조류 Chaetoceros debilis와 Leptocylindrus danicus의 생존전략 - 용존 무기 질소 제한 환경에서 용존 유기 질소의 이용가능성)

  • Yang, Han-Soeb;Jeon, Seul Gi;Oh, Seok Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.2
    • /
    • pp.212-219
    • /
    • 2016
  • The bioavailability of dissolved organic nitrogen (DON) by dominant species Chaetoceros debilis and Leptocylindrus danicus under dissolved inorganic nitrogen (DIN)-limited condition in the southwestern East Sea was conducted to assess the quantitative evaluation using growth kinetic experiment. Nitrogen sources were nitrate and ammonium as DIN, glycine and urea, which is portion component of DON in East Sea. Maximum specific growth rate (${\mu}_{max}$) and half-saturation constant ($K_s$) of C. debilis calculated from Monod equations were estimated to be $1.50day^{-1}$ and $1.62{\mu}M$ in nitrate, $1.13day^{-1}$ and $6.97{\mu}M$ in ammonium, $1.46day^{-1}$ and $3.36{\mu}M$ in glycine, $0.93day^{-1}$ and $0.55{\mu}M$ in urea, respectively. Also, L. danics was estimated to be $1.55day^{-1}$ and $5.21{\mu}M$ in nitrate, $1.57day^{-1}$ and $4.57{\mu}M$ in ammonium, $1.47day^{-1}$ and $3.80{\mu}M$ in glycine, $1.42day^{-1}$ and $1.94{\mu}M$ in urea, respectively. Both C. debilis and L. dancius have higher affinity of urea than DIN. The high affinity of urea was indicated that the dominant species were able to growth using urea under DIN-limited conditions. Thus, DON utilization of phytoplankton may be one of the important dominant strategy under DIN-limited environments such as southwestern East Sea.

Removal of Dissolved Organic Nitrogen from Surface Water and Reclaimed Water by Coagulation (지표수 및 재이용수내 용존 유기질소의 응집처리)

  • Lee, Wontae;Choi, June-Seok;Oh, Hyun Je
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.729-734
    • /
    • 2012
  • During chlorination processes dissolved organic nitrogen (DON) can form toxic nitrogenous disinfection byproducts and organic chloramines which have little or no bactericidal activity. DON needs to be removed before chlorination processes to reduce the formation of those products. This study investigated the removal of DON from surface water and reclaimed water by coagulation with aluminum sulfate (alum) and a cationic polymer (polyDADMAC). Removal characteristics of dissolved organic carbon (DOC) and ultraviolet absorbance at 254 nm ($UVA_{254}$) were compared with that of DON. Coagulation with alum removed DON, DOC, and $UVA_{254}$ with similar trends, but the removal of $UVA_{254}$ was highest. A dual coagulation strategy of alum and cationic polymer improved the removal of DON. Coagulation with cationic polymer alone was not effective due to its narrow range of charge neutralization. DON in reclaimed water was easier to remove than that in surface water, and higher molecular weight fraction (>10,000 Da) of DON was preferentially removed.

A Study on the Releasing Characteristics of Organic Matter and Heavy Metals and Changes of Dissolved Oxygen Concentration during Sediment Resuspension (퇴적물 재부유에 따른 유기물과 중금속 용출 및 용존산소량 변화 특성에 대한 연구)

  • Kang, Seon Gyeong;Lee, Han Saem;Lim, Byung Ran;Rhee, Dong Seok;Shin, Hyun Sang
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • The depletion of dissolved oxygen (DO) in urban streams has a profound effect on the aquatic ecosystem; however, the change in DO by resuspension of sediments and the cause have not been sufficiently investigated. In this study, the physicochemical properties (particle size, and the content of organic and heavy metals) of the sediments of an urban stream (Anyang Stream) and the characteristics of water quality changes (DO, dissolved organic carbon (DOC), dissolved nitrogen (DN), sediment oxygen demand (SOD), and adenosine triphosphate (ATP)) by sediment resuspension were investigated. The sediment content of fine particles (< 0.2 mm) increased from 36.7% to 52.7% from the upstream to the downstream, and the contents of heavy metals and organic matter of the sediment were also higher towards the downstream. The depletion of DO by resuspension was observed in the sediment at the downstream sites (P8, P9), where the fine particle content was high, and biological SOD (BSOD) was more than 88% compared to the total SOD. The increase in BSOD coincided with the increase in ATP. It was also confirmed that the depletion of DO could increase the amount of heavy metals (such as Fe, Mn, and Pb) released from the sediment. Based on the above results, it can be concluded that resuspension of sediments induces rapid water quality changes and may cause accidents, such as fish mortality, during rainfall, and such a water quality effect can be more pronounced in sediments with a high content of fine particles and organic matter and high biological activity.

Global Increases in Dissolved Organic Carbon in Rivers and Their Implications

  • Kang, Ho-Jeong;Jang, In-Young;Freeman, Chris
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.453-458
    • /
    • 2010
  • DOC (Dissolved Organic Carbon) is an operational terminology for organic carbon molecules dissolved in natural waters. DOC has been studied by ecologists extensively, because it plays a key role in various ecological functions such as substrates for secondary production and the carbon cycle. DOC also represents a substrate for microbial growth within potable water distribution systems, and can react with disinfectants (e.g., chloride) to form harmful disinfection by-products. In addition, residual DOC may carry with it organically bound toxic heavy metals. DOC in aquatic ecosystems may ultimately be transported to the oceans, or released back to the atmosphere by heterotrophic respiration, which can accelerate global climate change. There is evidence that DOC concentrations in aquatic ecosystems are increasing in many regions of the world including Europe, North America, and even in Korea. Land use changes, elevated temperature, elevated $CO_2$, recovery from acidification, and nitrogen deposition have been proposed as mechanisms for the trend. However, the key driving mechanism is yet to be conclusively determined. We propose that more extensive and longer-term observations, research of chemical properties of DOC, impacts of elevated DOC on environmental issues and interdisciplinary approaches are warranted as future studies to fill the gaps in our knowledge about DOC dynamics.