DOI QR코드

DOI QR Code

Survival Strategy of Dominant Diatom Chaetoceros debilis and Leptocylindrus danicus as Southwestern parts of East Sea - The availability of Dissolved Organic Nitrogen under Dissolved Inorganic Nitrogen-limited Environments

동해 남서해역에서 우점 규조류 Chaetoceros debilis와 Leptocylindrus danicus의 생존전략 - 용존 무기 질소 제한 환경에서 용존 유기 질소의 이용가능성

  • Yang, Han-Soeb (Department of Oceanography, Pukyong National University) ;
  • Jeon, Seul Gi (Department of Oceanography, Pukyong National University) ;
  • Oh, Seok Jin (Department of Oceanography, Pukyong National University)
  • Received : 2016.02.29
  • Accepted : 2016.04.27
  • Published : 2016.04.30

Abstract

The bioavailability of dissolved organic nitrogen (DON) by dominant species Chaetoceros debilis and Leptocylindrus danicus under dissolved inorganic nitrogen (DIN)-limited condition in the southwestern East Sea was conducted to assess the quantitative evaluation using growth kinetic experiment. Nitrogen sources were nitrate and ammonium as DIN, glycine and urea, which is portion component of DON in East Sea. Maximum specific growth rate (${\mu}_{max}$) and half-saturation constant ($K_s$) of C. debilis calculated from Monod equations were estimated to be $1.50day^{-1}$ and $1.62{\mu}M$ in nitrate, $1.13day^{-1}$ and $6.97{\mu}M$ in ammonium, $1.46day^{-1}$ and $3.36{\mu}M$ in glycine, $0.93day^{-1}$ and $0.55{\mu}M$ in urea, respectively. Also, L. danics was estimated to be $1.55day^{-1}$ and $5.21{\mu}M$ in nitrate, $1.57day^{-1}$ and $4.57{\mu}M$ in ammonium, $1.47day^{-1}$ and $3.80{\mu}M$ in glycine, $1.42day^{-1}$ and $1.94{\mu}M$ in urea, respectively. Both C. debilis and L. dancius have higher affinity of urea than DIN. The high affinity of urea was indicated that the dominant species were able to growth using urea under DIN-limited conditions. Thus, DON utilization of phytoplankton may be one of the important dominant strategy under DIN-limited environments such as southwestern East Sea.

동해 남서해역과 같이 용존 무기 질소(dissolved inorganic nitrogen; DIN)가 제한된 환경에서 우점 규조류 Chaetoceros debilis와 Leptocylindrus danicus의 용존 유기 질소(dissolved organic nitrogen; DON)의 이용성을 정량적으로 평가하였다. 질소원으로 DIN은 질산염과 암모늄, DON은 동해에서 중요한 비율을 차지하는 글리신(glycine)과 요소(urea)에 관하여 각각 평가하였다. Monod 식으로부터 유도한 C. debilis의 최대생장속도(${\mu}_{max}$)와 반포화상수(Ks)는 질산염에서 $1.50day^{-1}$$1.62{\mu}M$, 암모늄에서 $1.13day^{-1}$$6.97{\mu}M$, 글리신 $1.46day^{-1}$$3.36{\mu}M$, 요소 $0.93day^{-1}$$0.55{\mu}M$으로 나타났다. 또한 L. danicus는 질산염에서 $1.55day^{-1}$$5.21{\mu}M$, 암모늄에서 $1.57day^{-1}$$4.57{\mu}M$, 글리신 $1.47day^{-1}$$3.80{\mu}M$, 요소 $1.42day^{-1}$$1.94{\mu}M$이었다. 두 종 모두 요소에서 용존 무기 질소보다 상대적으로 높은 친화성이 확인되었으며, 이러한 높은 친화성은 DIN 제한된 상태에서 C. debilis와 L. danicus이 생장을 유지하기 위해 요소를 이용할 것으로 판단되어진다. 따라서 동해 남서해역과 같이 DIN이 제한된 해역의 경우, DON의 효율적인 이용이 식물플랑크톤의 우점화 전략에서 중요한 요인 중 하나로 생각된다.

Keywords

References

  1. Antia, N. J., P. J. Harrison and L. Oliveria(1991), Phycological reviews: the role of dissolved organic nitrogen in phytoplankton nutrition, cell biology, and ecology, Phycologia, Vol. 30, pp. 1-89. https://doi.org/10.2216/i0031-8884-30-1-1.1
  2. Auro, M. E. and W. P. Cochlan(2013), Nitrogen utilization and toxin production by two diatoms of the Pseudo-nitzschia pseudodelicatissima complex: P. cuspidata and fryxelliana, Journal of Phycology, Vol. 49, pp. 156-169. https://doi.org/10.1111/jpy.12033
  3. Berman, T. and D. A. Bronk(2003), Dissolved organic nitrogen; a dynamic participant in aquatic ecosystems, Aquatic Microbial Ecology, Vol. 31, pp. 279-305. https://doi.org/10.3354/ame031279
  4. Bronk, D. A. and D. K. Steinberg(2008), Nitrogen regeneration In: Capone, D.G. and E. J. Carpenter(eds), Nitrogen in the Marine Environment, Elsevier, Inc., New York, pp. 375-459.
  5. Carpenter, E. J. and K. Romans(1991), Major role of the cyanobacterium Trichodesmium in nutrient cycling in the North Atlantic Ocean, Science, Vol. 254, pp. 1356-1368. https://doi.org/10.1126/science.254.5036.1356
  6. Chihara, M. and M. Murano(1997), An illustrated guide to marine plankton in Japan, Tokai University Press, Tokyo, p. 1574.
  7. Chung, C. S., J. H. Shim, Y. C. Park and S. G. Park(1989), Primary productivity and nitrogenous dynamics in the East Sea of Korea, Journal of the Korean Society of Oceanography, Vol. 24, pp. 52-61.
  8. Cowey, C. B. and E. D. S. Corner(1963), Amino aicds and some other nitrogenous compounds in Calanus finmarchicus. J. Mar. Biol. Ass. U.K., Vol. 43, pp. 485-493. https://doi.org/10.1017/S0025315400000461
  9. Dittmar, T., H. P. Fitznar and G. Katmer(2001), Organic and biogeochemical cycling of organic nitrogen in the eastern Arctic Ocean as evident from D- and L-amino aicds. Geochim. cosmochim. Acta, Vol. 65, pp. 4103-5114. https://doi.org/10.1016/S0016-7037(01)00688-3
  10. Doblin, M. A., S. I. Blackburn and G. M. Hallegraeff(1999), Growth and biomass stimulation of the toxic dinoflagellate Gymnodinium catenatum (Graham) by dissolved organic substances, Journal of Experimental Marine Biology and Ecology, Vol. 236, pp. 33-47. https://doi.org/10.1016/S0022-0981(98)00193-2
  11. Duce, T. A., R. S. Liss, J. T. Merrill, T. Buar-Menard, B. B. Hichks, F. M. Miller, J. M. Prospero, T. Arimoto, T. M. Church, W. Ellis, J. N. Galloway, L. Hanson, T. D. Jickells, A. D. Knapp, K. H. Rienhart, B. Schneider, A. Soudine, J. J. Tokos, S. Tsunogai, R. Wollast and M. Zhou(1991), The atmospheric input of trace species to the world ocean, Global Biogeochemical Cycles, Vol. 5, pp. 193-259. https://doi.org/10.1029/91GB01778
  12. Dugdale, R. C.(1967), Nutrients limitation in the sea: dynamic, identification and significance, Limnology and Oceanography, Vol. 12, pp. 685-695. https://doi.org/10.4319/lo.1967.12.4.0685
  13. Dugdale, R. C. and J. J. Goering(1967), Uptake of new and regenerated forms of nitrogen in primary productivity, Limnology and Oceanography, Vol. 12, pp. 196-206. https://doi.org/10.4319/lo.1967.12.2.0196
  14. Eppley, R. W. and B. J. Peterson(1979), Particulate organic matter flux and planktonic new production in the deep ocean, Nature, Vol. 282, pp. 677-680. https://doi.org/10.1038/282677a0
  15. Eppley, R. W. and W. H. Thomas(1969), Comparison of half-saturation constant fro growth and nitrate uptake of marin phytoplankton. Journal of Phycology, Vol. 5, pp. 375-379. https://doi.org/10.1111/j.1529-8817.1969.tb02628.x
  16. Fisher, N.S. and R. A. Cowdell(1982), Growth of marine planktonic diatoms on inorganic and organic nitrogen. Mar. Biol., Vol. 72, pp. 147-155. https://doi.org/10.1007/BF00396915
  17. Gilbert P. M., C. Garside, J. A. Fuhrman and M. R. Roman(1991), Dependent coupling of inorganic and organic nitrogen uptake and regeneration in the plume of the Chesapeake Bay estuary and its regulation by large heterotrophs, Limnol. Oceanogr, Vol. 36, pp. 895-909. https://doi.org/10.4319/lo.1991.36.5.0895
  18. Gobler C. F., A. Burson, F. Koch, Y. Tang and M. R. Mulholland(2012), The role of nitrogenous nutrients in the occurrence of harmful algal blooms caused by Cochlodinium polykrikoides in New York estuaries (USA), Harmful Algae, Vo. 17, pp. 64-74. https://doi.org/10.1016/j.hal.2012.03.001
  19. Guillard, R. R. L. and J. H. Ryther(1962), Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt and Detonula confervaca (Cleve) Gran, Canadian Journal of Mircobiology, Vol. 8, No, 2, pp. 223-239.
  20. Hansell, D. A. and C. A. Carslon(2014), Biogeochemistry of marine dissolved organic matter, Academic Press.
  21. Hu, Z., S. Duan, N. Xu and M. R Mulholland(2014), Growth and nitrogen uptake kinetics in cultured Prorocentrum donghaiense, PLOS ONE, Vol. 9, No. 4, e94030. https://doi.org/10.1371/journal.pone.0094030
  22. Kang, I. S(2009), Optical characteristic and growth kinetics for nitrate and phosphate by the planktonic diatom Skeletonema costatum and bentic diatom Nitzschia sp., Master Thesis, Chnonam National University, Yeosu, p. 84.
  23. Keil, R. G. and D. L. Kirchman(1991), Dissolved combined amino acids in marine waters as determined by a vapor-phase hydrolysis method. Mar. Chem., Vol. 33, pp. 243-259. https://doi.org/10.1016/0304-4203(91)90070-D
  24. Kim, A. R., S. H. Youn, M. H. Chung, S. C. Yoon and C. H. Moon(2014), The influences of coastal upwelling on phytoplankton community in the Southern part of East Sea, Korea, Journal of the Korean Society of Oceanography, Vol. 19, pp. 287-301.
  25. Kim, T. H. and G. B. Kim(2013), Factors controlling the C:N:P stoichiometry of dissolved organic matter in the N-limited cyanobacteria-dominated East/Japan Sea, Journal of Marine Systems, Vol. 115-116, pp. 1-9. https://doi.org/10.1016/j.jmarsys.2013.01.002
  26. Kim, T. H., Y. W. Lee and G. B. Kim(2010), Hydrographically mediated patterns of photosynthetic pigments in the East/Japan Sea: Low N:P ratios and cyanobacterial dominance, Journal of Marine Systems, Vol. 82, pp. 72-79. https://doi.org/10.1016/j.jmarsys.2010.03.005
  27. Kwak, J. H., J. S. Hwang, E. J. Choy, H. J. Park, D. J. Kang, T. S. Lee, K. I. Chang, K. R. Kim and C. K. Kang(2013), High primary productivity and f-ratio in summer in the Ulleung basin of the East/Japan Sea, Deep Sea Research : Oceanographic Research Papers, Vol. 79, pp. 74-85. https://doi.org/10.1016/j.dsr.2013.05.011
  28. Kwon, H. K., S. J. Oh, M. O. Park and H. S. Yang(2014), Distribution of water masses and distribution characteristics of dissolved inorganic and organic nutrients in the southern part of the East Sea of Korea: Focus on the observed data in September, 2011, Journal of the Korean Society for Marine Environment and Energy, Vol. 17, pp. 90-103. https://doi.org/10.7846/JKOSMEE.2014.17.2.90
  29. Kwon, H. K., J. A. Park, H. S. Yang and S. J. Oh(2013), Dominance and surviral strategy of toxic dinoflagellate Alexandrium tamarense and Alexandrium catenella under dissolved inorganic nitrogen-limited conditions, Journal of the Korea Society for Marine Environment and Energy, Vol. 16, pp. 25-35. https://doi.org/10.7846/JKOSMEE.2013.16.1.25
  30. Leong, S. C. and S. Taguchi(2004), Response of the dinoflagellate Alexandrium tamarense to a range of nitrogen sources and concentrations: growth rate, chemical carbon and nitrogen, and pigments. Hydrobiologia, Vol. 515, pp. 215-224. https://doi.org/10.1023/B:HYDR.0000027331.49819.a4
  31. Moon, C. H., S. R. Yang, H. S. Yang, H. J. Cho, S. Y. Lee and S. Y. Kim(1998), Regeneration processes of nutrients in the polar front area of the East sea. IV. Chlorophyll a distribution, new production and the vertical diffusion of nitrate, Korean Journal of Fisheries and Aquatic Sciences, Vol. 31, No. 2, pp. 259-266.
  32. Park, Y. C., S. K. Son, K. H. Chung and K. H. Kim(1995), Characteristics of fluorescent organic matter and amino acids composition in the East Sea, Journal of the Korean Society of Oceanography, Vol. 30, pp. 341-354.
  33. Porter, K. G. and Y. S. Feig(1980), The use of DAPI for identifying and counting aquatic microflora, Limnology and Oceanography, Vol. 25, pp. 943-948. https://doi.org/10.4319/lo.1980.25.5.0943
  34. Provasoil, L., K. Shiraishi and J. R. Lance(1959), Nutritional idiosyncrasies of Artemia and Tigriopus in monoxenic culture, Annals of the New York Academy of Sciences, Vol. 77, pp. 250-261.
  35. Ryther, J. H. and W. M. Dunstan(1971), Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science, Vol. 12, pp. 1008-1013.
  36. Sharp, J. H.(1983), The distribution of inorganic nitrogen and dissolved and particulate organic nitrogen in the sea. Academic Press, New York, pp. 1-35.
  37. Shim, J. H.(1994), Illustrated encyclopedia of fauna and flora of Korea, Marine phytoplankton, Ministry of Education, Seoul, Vol. 34, pp. 1-487.
  38. Shim, J. H., K. Y. Kwon, S. Y, Kim and D. S. Yoon(2015), Seasonal change of phytolankton dominant species dased on water mass in the coastal areas of the East Sea, Jornal of the Korean Society of Marine Environment & Safety, Vol. 21, No. 5, pp. 474-483. https://doi.org/10.7837/kosomes.2015.21.5.474
  39. Sunlu, F. S., B. Kutlu and H. B. Buyukisik(2010), Comparison of growth kinetics of Chaetocers gracilis isolated from two different areas in the Aegean Sea (The Bay of Izmir and the Homa Lagoon), Journal of Animal and Veterinary Advances, Vol. 9, pp. 1796-1803. https://doi.org/10.3923/javaa.2010.1796.1803
  40. Taylor C. T., C. J. Gobler and S. A. Sanudo-Wilhelmay(2006), Speciation and concentrations of dissolved nitrogen as determinants of brown tide Aureococcus anophagefferens bloom initiation, Marine Ecology Progress Series Vol. 312, pp. 67-74. https://doi.org/10.3354/meps312067
  41. Tomas, C. R.(1997), Identifying marine phytoplankton, Academic Press, London, p. 858.
  42. Werner, D.(1997), The biology of diatoms, Blackwell Scientific Publications, p. 469.
  43. Worsfold, P. J., P. Monbet, A. D. Tappin, M. F. Fitzsimons, D. A. Stiles and I. D. McKelvie(2008), Characterisation and quantification of organic phosphorus and organic nitrogen components in aquatic systems: a review. Anal. Chim. Acta, Vol. 624, pp. 37-58. https://doi.org/10.1016/j.aca.2008.06.016
  44. Zhang G., S. Liang, X. Shi and X. Han(2015), Dissolved organic nitrogen bioavailability indicate by amino acids during a diatom to dinoflagellate bloom succession in the Changjiang River estuary and its adjacent shelf, Marine and Chemistry, Vol. 176, pp. 83-95. https://doi.org/10.1016/j.marchem.2015.08.001

Cited by

  1. 독도 연안 식물플랑크톤의 계절적 분포 특성과 환경요인: 2018년과 2019년 비교 vol.38, pp.1, 2016, https://doi.org/10.11626/kjeb.2020.38.1.047
  2. Effect of Ambient Nitrogen on the Growth of Phytoplankton in the Bohai Sea: Kinetics and Parameters vol.125, pp.12, 2016, https://doi.org/10.1029/2020jg005643