• Title/Summary/Keyword: Dissolved Organic Carbon (DOC)

Search Result 178, Processing Time 0.023 seconds

Evaluation of Granular Activated Carbon Process Focusing on Molar mass and size distribution of DOM (DOM의 분자량과 크기분포에 따른 입상활성탄 공정의 평가)

  • Chae, Seon H.;Lee, Kyung H .
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.31-38
    • /
    • 2008
  • The primary objective of this study was to evaluate the variation of the molecular size distribution by granular activated carbon (GAC) adsorption. GAC adsorption was assessed by using the rapid small-scale column test (RSSCT) and high-performance size-exclusion chromatography (HPSEC) was used to analyze the molecular size distribution (MSD) in the effluent of GAC column. RSSCT study suggested that GAC adsorption exhibited excellent interrelationship between dissolved organic carbon (DOC) breakthrough and MSD as function of bed volumes passed. After GAC treatment, the nonadsorbable fraction which was about 25percents of influent DOC corresponded to the hydrophilic (HPI) natural organic carbon (NOM) of NOM fractions and was composed entirely of <300 molecular weight (MW) in the HPSEC at the initial stage of the RSSCT operation. The dominant MW fraction in the source water was 1,000~5,000daltons. At the bed volumes 2,500, MW <500 of GAC treated water was risen rather than it of source water. After the bed volumes 7,300 of operation, the MW 1,000~3,000 fraction was closed to about 80percents of DOC found in the GAC influent. The Number-average molecular weight (Mn) value determined using HPSEC for the effluent of GAC column was gently increased as DOC breakthrough progress. The quotient p(Mw/Mn) can be used to estimate the degree of polydispersity was shown greatest value for the GAC effluent at the initial stage of the RSSCT operation.

Prediction of Coagulation/Flocculation Treatment Efficiency of Dissolved Organic Matter (DOM) Using Multiple DOM Characteristics (다중 유기물 특성 지표를 활용한 용존 유기물질 응집/침전 제거효율 예측)

  • Bo Young Kim;Ka-Young Jung;Jin Hur
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.6
    • /
    • pp.465-474
    • /
    • 2023
  • The chemical composition and molecular weight characteristics of dissolved organic matter (DOM) exert a profound influence on the efficiency of organic matter removal in water treatment systems, acting as efficiency predictive indicators. This research evaluated the primary chemical and molecular weight properties of DOM derived from diverse sources, including rivers, lakes, and biomasses, and assessed their relationship with the efficiency of coagulation/flocculation treatments. Dissolved organic carbon (DOC) removal efficiency through coagulation/flocculation exhibited significant correlations with DOM's hydrophobic distribution, the ratio of humic-like to protein-like fluorescence, and the molecular weight associated with humic substances (HS). These findings suggest that the DOC removal rate in coagulation/flocculation processes is enhanced by a higher presence of HS in DOM, an increased influence of externally sourced DOM, and more presence of high molecular weight compounds. The results of this study further posit that the efficacy of water treatment processes can be more accurately predicted when considering multiple DOM characteristics rather than relying on a singular trait. Based on major results from this study, a predictive model for DOC removal efficiency by coagulation/flocculation was formulated as: 24.3 - 7.83 × (fluorescence index) + 0.089 × (hydrophilic distribution) + 0.102 × (HS molecular weight). This proposed model, coupled with supplementary monitoring of influent organic matter, has the potential to enhance the design and predictive accuracy for coagulation/flocculation treatments targeting DOC removal in future applications.

Effect of Coagulated Flocs Broken by the Pressure Pump on Removal Rate and Membrane Fouling of Pressurized MF process (가압펌프에 의해 해체된 플럭이 가압식 막여과 공정의 제거효율 및 막오염에 미치는 영향)

  • Kim, Junhyun;Moon, Baeksu;Park, Jongsu;Cho, Yoonho;Kim, Jinho
    • Membrane Journal
    • /
    • v.23 no.6
    • /
    • pp.460-468
    • /
    • 2013
  • This study reviewed optimum dosage rate of coagulant and ability to remove dissolved organic carbon without sedimentation in conventional water purification plant. It was confirmed that floc formated by pre-treatment process was broken by impeller of booster pump. Optimum dosage rate of coagulant was 4 mg/L (as PACl 17%) for floc formation through blend, coagulation and after passing through the pump when turbidity of raw water was less than 10 NTU. And average removal rate of dissolved organic carbon was 43% at that time. Maximum removal rate of dissolved organic carbon was 48%, even though coagulation rate was increased gradually until 8 mg/L (as PACl 17%). So removal rate of dissolved organic carbon is not much improved even if dosage rage of coagulant increase. TMP of PVDF (polyvinylidene flouride) pressurized MF process without pre-treatment operated at 0.54 bar and TMP of PVDF pressurized MF process with pre-treatment operated at 0.41 bar.

Formation of Chloroform from Algal Cell Cultures by Chlorination (배양조류의 염소소독에 의한 클로로포름 생성특성 연구)

  • Kim, Hak-Chul;Choi, Il-Whan
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.2
    • /
    • pp.40-48
    • /
    • 2009
  • Unusual bloom of toxic cyanobacteria in water bodies have drawn attention of environmentalists world over. Major bloom of Anabaena, Microcystis in water storage reservoir, rivers and lake leading to adverse health effects have been reported from Australia, England and many part of the world. These cyanobacterial cells can release intercellular matter like toxin in water and these intercellular matter can increase the concentration of organic matter. Cellysis can occur when algal cells meet the disinfectants like chlorine in water treatment plant and the resultant rising up of DOC(Dissolved Organic Carbon) or TOC(Total Organic Carbon) can increase the formation of disinfection by products. Disinfectants that kill microorganisms react with the organic or inorganic matter in raw water. In general disinfectants oxidize the matter in raw water and the resultant products can be harmful to human. There are always conflict about which is more important, disinfection or minimizing disinfection by products. The best treatment process for raw water is the process of the lowest disinfection by products and also the the lowest microorganism. In this study the cultured cells, Microcytis Aeruginosa(MA), Anabaena Flos-aquae(AF), Anabaena Cylindrica(AC), and the cells obtained in Daechung Dam(DC) whose dominant species was Anabaena Cylindrica were subjected to chlorination. Chlorination oxidizes inorganic and organic compounds and destruct live cells in raw water. Chloroform was analyzed for the cultured cells which were treated with $20mg/\ell$ dose of chlorine. In general chloroform is easily formed when dissolved organic matter react with chlorine. The cultured cells contributes the concentration of dissolved organic carbon and also that of total organic carbon which might be potent precusors of chloroform formed. The correlations of the concentration of chloroform, DOC and TOC were investigate in this study.

Evaluation of Advanced Oxidation Process(AOP) as a Pretreatment Process of Biological Activated Carbon in Drinking Water Treatment (정수처리에서 생물활성탄의 전처리로서 고급산화처리법의 평가)

  • Kim Woo-Hang
    • Journal of Environmental Science International
    • /
    • v.8 no.6
    • /
    • pp.725-730
    • /
    • 1999
  • The advanced oxidation process (AOP) using ozone combined with hydrogen peroxide and ultraviolet treatment were evaluated for biodegradable dissolved organic carbon (EDOC) formation and dissolved organic carbon (DOC) removal. Oxidation treatment were conducted alone or combination with ozone, hydrogen peroxide and ultraviolet processes. Ozone dosage of ozone process was varied from $0.5mg/l{\ell}\cdot}min$ to $5mg/{\ell}{\cdot}min$. Ozone/hydrogen peroxide process was done using $20mg/{\ell}{\cdot}min$ of hydrogen peroxide concentration. Ozone/ultraviolet process was irradiated with $12mW/cm^2$ of density and 254nm. Ozone dosage was varied from $0.5mg/{\ell}{\cdot}min$ to $5mg/{\ell}{\cdot}min$ at the ozone/hydrogen peroxide and ozone/ultraviolet processes too. Contact time of all the process was 20 minutes. Oxidation treatment were performed on microfiltration effluent samples. BDOC formation was reached to an optimum at ozone dosage of $1.5mg/{\ell}{\cdot}min$ in the ozone/hydrogen peroxide process and $1mg/{\ell}{\cdot}min$ in ozone/ultraviolet process, after which BDOC formation was decreased at higher ozone dosages. But BDOC formation was increased with ozone dosages increasing in ozone process. The efficiency of DOC removal was higher AOPs than ozone process. Ozone/ultraviolet proces was the highest for DOC removal efficiency in each process. THMFP. removal efficiency by ozone/ultraviolet process was higher than that by each of ozone process and ozone/hydrogen peroxide process.

  • PDF

Effects of Organic Matter Concentration in Soil on Phytoavailability of Cadmium in Medicinal Plants

  • Noh, Yong-dong;Kim, Kwon-Rae;Kim, Won-Il;Jung, Ki-Yuol;Hong, Chang Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.319-325
    • /
    • 2015
  • The safety of plant species used as a source for herbal medicines and dietary supplements has recently been questioned due to poisonings associated with the presence of cadmium (Cd) in these plants. These plants can derive Cd from their presence in the soil. Organic matter (OM) concentrations in soils could affect the availability of Cd for plants. To determine the effect of OM concentration in soil on the concentration of plant available Cd and uptake of this toxic element by medicinal plants, soil and plant samples were collected from 102 fields supporting for 5 species of medicinal plants in 6 province of South Korea. Concentrations of OM and dissolved organic carbon (DOC) in soils affected the phytoavailability of Cd. One M $NH_4OAc$ extractable Cd concentration in soil increased with increasing OM concentrations. There were significantly positive relationships between 1 M $NH_4OAc$ extractable Cd concentration and OM concentration in soil and between 1 M $NH_4OAc$ extractable Cd concentration and DOC concentration. Likewise, OM and DOC concentrations significantly affected Cd concentration in medicinal plant soils. Cadmium concentration in medicinal plants increased with increasing OM concentration in soil [Cd concentration $(mg\;kg^{-1})= 0.179+1.424{\times}10^{-3}$ OM concentrations, $R^2=0.042*$] and with DOC concentration [Cd concentration $(mg\;kg^{-1})= 0.150+5.870{\times}10^{-4}$ DOC concentrations, $R^2=0.124***$]. These results might result from Cd-DOC complex which is easily absorbed Cd form by plant root. Dissolved organic carbon concentration had more positive relationship with Cd concentration in medicinal plants and 1 M $NH_4OAc$ extractable Cd concentration in soils than OM. Cadmium concentration in all 5 species of medicinal plant (Atractylodes macrocephala Koidzumi, Astragalus membranaceus, Codonopsis lanceolata, Platycodon grandiflorum, and Rehmannia glutinosa) significantly increased with increasing DOC concentration in soil. From the above results, formation of Cd-DOC complex caused by OM application might be mainly attributed to increase in Cd concentration in medicinal plants.

Removal of Dissolved Organic Nitrogen from Surface Water and Reclaimed Water by Coagulation (지표수 및 재이용수내 용존 유기질소의 응집처리)

  • Lee, Wontae;Choi, June-Seok;Oh, Hyun Je
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.729-734
    • /
    • 2012
  • During chlorination processes dissolved organic nitrogen (DON) can form toxic nitrogenous disinfection byproducts and organic chloramines which have little or no bactericidal activity. DON needs to be removed before chlorination processes to reduce the formation of those products. This study investigated the removal of DON from surface water and reclaimed water by coagulation with aluminum sulfate (alum) and a cationic polymer (polyDADMAC). Removal characteristics of dissolved organic carbon (DOC) and ultraviolet absorbance at 254 nm ($UVA_{254}$) were compared with that of DON. Coagulation with alum removed DON, DOC, and $UVA_{254}$ with similar trends, but the removal of $UVA_{254}$ was highest. A dual coagulation strategy of alum and cationic polymer improved the removal of DON. Coagulation with cationic polymer alone was not effective due to its narrow range of charge neutralization. DON in reclaimed water was easier to remove than that in surface water, and higher molecular weight fraction (>10,000 Da) of DON was preferentially removed.

Behavior of Refractory Organic Matter in Leachate from Landfill Contaminated by Foot-and-mouth Disease (구제역 매몰지역 침출수에서 발생하는 난분해성 유기물질 거동)

  • Kang, Meea;An, Yaesol
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.427-434
    • /
    • 2013
  • The leachate from landfill (Andong city) contaminated by foot-and-mouth disease (FMD) contains 44%-50% hydrophilic organic matter, compared with 22%-27% in natural water bodies such as ground water, lake water, and river water. In such natural water, the organic matter content is reduced by the metabolism of microbes in the water. However, in the case of leachate-1 and -2, the concentrations of RTOC (refractory total organic carbon) and RDOC (refractory dissolved organic carbon) were higher than the initial TOC and DOC after burial. According to time elapsed after burial, the concentrations of RTOC and RDOC were decreased below the initial TOC and DOC. In the case of leachate-6 (386 days after burial), RDOC made up 91% of RTOC. This result shows that organic matter in the leachate was composed dominantly of RDOM, most of which was not removed by the metabolism of microbes. Hence, the presence and characteristics of RDOM provide a valuable indication of the effect of leachate on the quality of surface water and ground water. Such information is useful in understanding leachate environments.

Removal Characteristics of Natural Organic Matters in Activated Carbon and Biofiltration Process (활성탄 공정과 생물여과 공정에서의 자연유기물질 제거특성)

  • Son, Hee-Jong;Choi, Keun-Joo;Kim, Sang-Goo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.2
    • /
    • pp.205-213
    • /
    • 2007
  • We have studied NOM(natural organic matters) adsorption and biodegradation on 3 kinds of activated carbon and a anthracite. Coal based activated carbon showed the highest DOC(dissolved organic carbon) adsorption capability and roconut(samchully), wood (pica) in the order among the 3 kinds of activated carbon(F400). The biomass amount and activity also showed on coal, wood and coconut based activated carbon in the order. Over 15 minutes EBCT(empty bed contact time) needed to achieve 10 to 17% average removal efficiency and $18\sim24%$ maximum removal efficiency of NOM biodegradation in biofilter using anthracite. Hydrophobic and below 10,000 dalton NOM was much easier to adsorb into the activated carbon than hydrophilic NOM, THMFP(trihalomethane formation potential) and BDOC (biodegradable dissolved organic carbon)$_{slow}$ were much easier than HAA5FP(haloacetic acid 5 formation potential) and $BDOC_{rapid}$ to adsorb into the activated carbon. Hydrophilic and below 1,000 dalton NOM was much easily biodegraded and HAA5FP and $BDOC_{rapid}$ was easier than THMFT and $BDOC_{slow}$ to biodegrade in the biofilter.

The Distribution of Organic Carbon and its Decomposition Rate in the Kum River, Korea (금강수계에서 수중 유기탄소의 분포와 분해속도)

  • Jang, Chang-Won;Kim, Jai-Ku;Kim, Dong-Hwan;Kim, Bomchul;Park, Ju-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.174-179
    • /
    • 2008
  • The distribution of organic carbon and its decomposition rate were studied in the middle and down stream reaches of the Kum River system, Korea. Water samples were collected from May to June in 2006 at seven mainstream sites and three tributary sites from the river mouth to the Daechung Reservoir outlet. The change of DOC and POC were measured during incubation for the determination of decomposition rate. The reduction of organic carbon during 20 days' incubation was regarded as labile or biodegradable organic carbon (LDOC, LPOC), and the remaining organic carbon was regarded as recalcitrant organic carbon. The mean TOC was $5.17({\pm}1.49)mgC{\cdot}L^{-1}$ in the mainstream sites and $7.09({\pm}1.48)mgC{\cdot}L^{-1}$ in tributary sites, respectively. TOC comprised of 62% DOC and 38% POC. LPOC was approximately 68% of POC, while LDOC was only 24% of DOC. Mean decomposition rate of TOC was about $0.03day^{-1}$. Mean decomposition rates of LPOC ranged from $0.10day^{-1}$, and that of LDOC was approximately $0.08day^{-1}$. The decomposition rate of both LPOC and LDOC did not show significant difference between mainstream and tributary sites. The result of this study can give a guide to the selection of parameters in the calibration processes of water quality models.