Removal Characteristics of Natural Organic Matters in Activated Carbon and Biofiltration Process

활성탄 공정과 생물여과 공정에서의 자연유기물질 제거특성

  • Son, Hee-Jong (Water Quality Research Institute, Waterworks Headquarter) ;
  • Choi, Keun-Joo (Water Quality Research Institute, Waterworks Headquarter) ;
  • Kim, Sang-Goo (Water Quality Research Institute, Waterworks Headquarter)
  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 최근주 (부산광역시 상수도사업본부 수질연구소) ;
  • 김상구 (부산광역시 상수도사업본부 수질연구소)
  • Published : 2007.02.28

Abstract

We have studied NOM(natural organic matters) adsorption and biodegradation on 3 kinds of activated carbon and a anthracite. Coal based activated carbon showed the highest DOC(dissolved organic carbon) adsorption capability and roconut(samchully), wood (pica) in the order among the 3 kinds of activated carbon(F400). The biomass amount and activity also showed on coal, wood and coconut based activated carbon in the order. Over 15 minutes EBCT(empty bed contact time) needed to achieve 10 to 17% average removal efficiency and $18\sim24%$ maximum removal efficiency of NOM biodegradation in biofilter using anthracite. Hydrophobic and below 10,000 dalton NOM was much easier to adsorb into the activated carbon than hydrophilic NOM, THMFP(trihalomethane formation potential) and BDOC (biodegradable dissolved organic carbon)$_{slow}$ were much easier than HAA5FP(haloacetic acid 5 formation potential) and $BDOC_{rapid}$ to adsorb into the activated carbon. Hydrophilic and below 1,000 dalton NOM was much easily biodegraded and HAA5FP and $BDOC_{rapid}$ was easier than THMFT and $BDOC_{slow}$ to biodegrade in the biofilter.

입상활성탄 및 생물여과 공정에서 활성탄 종류별 DOC(dissolved organic carbon) 흡착능은 석탄계가 가장 우수한 것으로 나타났고, 다음으로 야자계, 목탄계 순으로 조사되었으며, 활성탄 종류별 부착 미생물의 생체량과 활성도는 석탄계에서 가장 높게 나타났으며, 다음으로 목탄계, 야자계, 안트라사이트 순으로 나타났다. 안트라사이트를 이용한 생물여과 공정에서 OM(natural organic matters)의 생분해율은 15분 이상의 EBCT(empty bed contact time)가 주어져야 bed volume에 따라 평균 $10\sim17%$, 최대 $18\sim24%$ 정도의 생분해율을 얻을 수 있었다. NOM의 활성탄 흡착은 주로 친수성 보다 소수성 유기물질과 10,000 Da 이하의 유기물질의 제거가 용이하였으며 HAA5FP(haloacetic acid 5 formation potential) 보다 THMFP(trihalomethane formation potential), BDOC(biodegradable dissolved organic carbon)$_{rapid}$ 보다는 $BDOC_{slow}$의 제거가 용이한 것으로 조사되었다. 생물여과 공정에 의한 유기물질 제거 특성은 주로 친수성과 1,000 Da 이하의 유기물질 제거가 용이하였으며, THMFP 보다는 HAASFP, $BDOC_{slow}$ 보다는 $BDOC_{rapid}$의 제거가 용이한 것으로 조사되었다.

Keywords

References

  1. Mallevialle, J., Odendaal, P. E., and Wiesner, M. R., Water Treatment Process, Mcgraw-Hill(1996)
  2. White, M, C., Thompson, J. D., Harrington, G. W., Singer, P. C., 'Evaluating criteria for enhanced coagulation compliance,' J. AWWA, 89(5), 64-77(1997) https://doi.org/10.1002/j.1551-8833.1997.tb08228.x
  3. LeChevallier, M. W., Cawthon, C. D., and Lee, R. G., 'Inactivation of biofilm bacteria,' Appl. Envir. Microbiol., 54, 2492(1988)
  4. LeChevallier, M. W., Schulz, W., and Lee, R. G., 'Bacterial nutrients in drinking water,' Appl. Environ. Microbiol., 57(3), 857 - 862(1991)
  5. Zavaleta, J. O,, Hauchman, F. S., and Cox, M. W., 'Epidemiology and toxicology of disinfection by-products,' Formation and Control of Disinfection By-Products in Drinking Water, Singer, P. C.(Ed), American Water Works Association, Denver, pp. 95 - 117(1999)
  6. Craun, G. F., Bull, R. J., Clark, R. M., Doull, J., Grabow, W., Marsh, G. M., Okun, D. A., Regli, S., Sobsey, M. D., and Symons, J. M., 'Balancing chemical and microbial risks of drinking water disinfection. part 1. benefits and potential risks,' Water Supply: Research & Technology-Aqua, 43, 192 - 199(1994)
  7. 한국표준협회, KS 활성탄 시험방법, KS M 1802(1998)
  8. 환경부, 수처리제의 기준과 규격 및 표시기준, 환경부 고시 제 1999-173호.(1999)
  9. Snoeyink, V. L., 'Adsorption of organic compounds,' In Water Quality and Treatment: a Handbook of Community Water Supplies, 4th Ed., Edited by Pontius, F. W., McGraw-Hill Inc., New York, pp. 781-855(1990)
  10. U.S.EPA National Exposure Research Laboratory, Office of Research and Development, Method 552.2., Cincinnati, Ohio(1995)
  11. 손희종, 노재순, 강임석, '회분식 생물반응기를 이용한 $BDOC_rapid$$BDOC_slow$ 결정', 한국물환경학회지, 20(4), 357 - 364(2004)
  12. 長澤, '粒狀活性炭表層のぢける微生物の動向,' 第41 回 日本水道硏究發表會 發表論文集,1-3 (1990)
  13. APHA, AWWA, WEF, 'Heterotrophic plate count,' Standard Methods for the Examination of Water and Wastewater, Eaton, A. D., Clesceri, L. S. and Greenberg, A. E.(Eds), APHA, AWWA, WEF, Washington DC, 19th ED, pp. 9-31 -9-35(1995)
  14. Fuhrman, J. A. and Azam, F., 'Thymidine incorporation as a measure of heterotrophic bacterio-plankton production in marine surface waters: evaluation and field results,' Mar. Biol., 66, 109 - 120(1982) https://doi.org/10.1007/BF00397184
  15. Parsons, T. R., Maita, Y. and Lalli, C. M., A Manual of Chemical and Biological Methods for Seawater Analysis, Pergamon, New York(1984)
  16. Bjelopavlic, M., Newcombe, G., and Hayes, R., 'Adsorption of NOM onto activated carbon: effect of surface charge, ion strength and pore volume distribution,' J. Colloid and Interface Science, 210, 271 -280(1999) https://doi.org/10.1006/jcis.1998.5975
  17. 손희종, 박홍기, 이수애, 정은영, 정철우, '생물활성탄 공정에서 활성탄 재질에 따른 부착미생물 군집특성,' 대한환경공학회지, 27(12), 1311-1320(2005)
  18. Leisinger, T., Cook, A. M., HUtter, R., and Nuesch, J., Microbial Degradation of Xenobiotics and Recalcitrant Compounds. Academic Press., New York(l981)
  19. Cipparone, L. A., Diehl, A. C, and Speitel, G. E., 'Ozonation and BDOC removal: effect on water quality,' J. AWWA, 89(2), 84 - 97(1997)