• Title/Summary/Keyword: Dissolved Organic Carbon(DOC)

Search Result 178, Processing Time 0.03 seconds

Removal of Odor and THM from the Raw Water of Daecheong Dam (대청호 원수내 냄새 및 THM 제거방안 연구)

  • Jeon, Hang-Bae;Yun, Gi-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.3
    • /
    • pp.235-245
    • /
    • 1997
  • A pilot scale study for removing odor and trihalomethane formation potential (THMFP) was investigated in the standard water treatment plant equipped with ozone oxidation and granular activated carbon (GAC) adsorption processes. The removal efficiency of dissolved organic carbon (DOC) in the pilot scale standard water treatment process (PSWTP) was about 25%, however, no more removal in the ozone oxidation process. On a GAC after 30 days operation, DOC removal efficiency was about 75%. Odor removal efficiency was about 30% in PSWTP, 60% in ozone oxidation, and almost complete in well as DOC. Mid-1 and 2 that showed breakthrough in odor inducing material as well as DOC. Mid-1 and 2 chlorination was able to reduce trihalomethanes (THM) by 25% compared to prechloringation, while postchlorination alone could reduce them by 30%.

  • PDF

Prediction of Seasonal Variations on Primary Production Efficiency in a Eutrophicated Bay (부영양화해역의 내부생산효율에 대한 계절변동예측)

  • 이인철
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.53-59
    • /
    • 2001
  • The Primary Production of phytoplanktons produces organic matter in high concentration in eutrophicated Hakata Bay, Japan, even during the winter season in spite of low water temperature. Phytoplanktons are considered to have any biological capabilities to keep activities of photosynthesis under the unfavorable conditions, and this affects water quality of the bay. In this study, seasonal variations in primary production efficiency were predicted by using a simple box-type ecosystem model, which introduced the concept of efficiency for absorption of solar radiation energy in relation to growth of phytoplanktons under the low solar radiation intensity. According to the simulation result of primary production, it was organic pollution comes from dissolved organic carbon (DOC) throughout the year, DOC of which is originated from the primary production of phytoplanktons on biological response of the seasonal variation of ambient conditions.

  • PDF

Outflow of Dissolved Organic Matter from Agricultural Fields in an Irrigation Period (관개기간 중 농경지로부터의 용존 유기물의 유출)

  • Shim, Sooyoung;Kim, Bumchul;Hosoi, Yoshihiko;Masuda, Takanori
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.141-146
    • /
    • 2005
  • The aim of this study is to quantify and characterize the dissolved organic carbon (DOC) from paddy fields and crop fields in Tottori, Japan. DOC and ultraviolet (UV) absorption were measured in the filtrated water of each sample. The DOC concentration and the SUVA (specific UV absorption) of biodegradation analysis samples were determined around 50 days after their incubation. In the Fukui paddy fields, DOC concentration varied seasonally from 1.1 to $10.1mg\;Cl^{-1}$, becoming higher during heavy runoffs in April, a non-agriculture period. Variations in DOC concentration did not always correspond to rainfall, though. The Obadake paddy fields showed a DOC concentration pattern similar to that of the Fukui paddy fields. The daily DOC discharge per area in the Fukui (up), Fukui (down), Obadake (south) and Obadake (north) paddy fields influent from paddy fields were 0.02, 0.0161, 0.0135 and $0.0027kg\;a^{-1}day^{-1}$, respectively. These differences resulted from differences in agricultural types and customs of farmers according to paddy fields and other kinds of fields. Also, the SUVAs [which are indirect means to evaluate humic substances (hydrophobic fractions)] of the studied influent waters from paddy fields were generally lower than those of the influent waters from crop fields. Nonbiodegradable DOC accounted for 50.2 - 98% and 46.8 - 85.5% of the total DOC in the paddy fields and in the crop fields, respectively.

Organic Matters Budget and Movement Characteristic in Lake Hoengseong (횡성호의 유기물 수지 및 거동 특성)

  • Joung, Seung-Hyun;Park, Hae-Kyung;Yun, Seok-Hwan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.238-246
    • /
    • 2012
  • Organic matters budget in Lake Hoengseong were monthly investigated from April 2009 to November 2009. The intense rainfall occurred at between July and August and the hydrological factors were highly varied during the rainfall season. By the concentrated rainfall, the elevation, influx and efflux were sharply increased and the turbid water was also flowed into the middle water column in Lake. The inflow of turbid water increased the nutrient concentrations in water body and this appears to stimulate of phytoplankton regard as the primary productivity of influx of organic matter. Monthly average concentration of dissolved organic carbon (DOC) was generally higher than the particulate organic carbon (POC) concentration in Lake, but Temporal and spatial variation of POC concentration was higher than DOC and the maximum POC concentration was recorded in surface water in August, had the highest phytoplankton biomass. Organic carbon concentration in inflow site was rarely changed during the dry season, but the concentration was rapidly increased by the initial intense rainfall. In organic matters budget, the most of the organic matters was inflowed from the inflow site at rainfall season. Especially, the influx of allochthonous organic matters during the intense rainfall was 72.4% in the total influx organic matters.

Characteristics of Organic Matters in the Suyeong River During Rainfall Event (강우 시 수영강 유역 내 유기물질의 특성)

  • Kim, Suhyun;Kim, Jungsun;Kang, Limseok
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.5
    • /
    • pp.487-493
    • /
    • 2018
  • Urban stormwater runoff is the one of the most extensive causes of deterioration of water quality in streams in urban areas. Especially, in the Suyeong River watershed, non-point sources from urban-residential areas are the most common cause of water pollution. Also, it has been ascertained that BOD and COD as indexes of organic matter, have limitation on management of Suyeong River's water quality. In this study, changes of organic matter properties of Suyeong River from inflow of non-point source during rainfall were investigated. Fractions of organic matters were analyzed using water samples collected at two sites (Suyeong River and Oncheon Stream) during a rain event. Variations of dissolved organic carbon (DOC) concentration by rainfall were similar to flow rate change in the river. Distribution of organic matter fraction according to change of rain duration revealed that while hydrophilic component increased at initial rainfall, the hydrophobic component was similar to change in dissolved organic carbon (DOC) concentration. Also, the relative proportion of hydrophilic components in organic matter in river water increased, due to rainfall. Results of biodegradation of organic matters revealed that decomposition rate of organic matters during rainfall was higher than that of during a non-rainfall event.

A Study on Transport Characteristics of Organic and Inorganic Carbons in the Open Estuary of the Tamjin River, Korea (탐진강 열린하구에서 탄소물질의 성상별 이동 특성 연구)

  • Park, Hyung-Geun;Ock, Giyoung
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.665-671
    • /
    • 2018
  • This paper represents an investigation into the pattern of carbon transportation and composition on an open estuary in the transition zone between the river and marine environment in Tamjin River where stream water flows into the Gangjin Bay. To conduct the study, seven plots were established along an environmental gradient from river and estuary to the ocean. Surface water samples were collected thrice during the summer rainfalls and non-flooding seasons in 2017. The samples were then measured for the concentrations of dissolved organic carbon ([DOC]), particulate organic carbon ([POC]) and dissolved inorganic carbon ([DIC]). An analysis of the results showed that [POC] did not increase in the river even during the summer rainfall. However, [DOC] increased resulting in a higher [DOC]:[POC] ratios for the non-flooding season compared to summer rainfall events. On the other hand, the marine site of the estuary bay showed the highest [DIC] which was stable relative to those of river sites. The results suggest that in an open estuary zone, river and ocean supplied the open estuary zone with different types of carbon materials; mainly DOC supplied from the river and DIC sourced from the ocean.

Patterns in solute chemistry of six inlet streams to Lake Hövsgöl, Mongolia

  • Puntsag, Tamir;Owen, Jeffrey S.;Mitchell, Myron J.;Goulden, Clyde E.;McHale, Patrick J.
    • Journal of Ecology and Environment
    • /
    • v.33 no.4
    • /
    • pp.289-298
    • /
    • 2010
  • A number of characteristics of the Lake H$\ddot{o}$vsg$\ddot{o}$l watershed, such as the lake's location at the edge of the Central Asian continuous permafrost zone, provide a unique opportunity to evaluate possible anthropogenic impacts in this remote area in northern Mongolia. In this study, we compared stream solute concentrations in six sub-watersheds in the Lake H$\ddot{o}$vsg$\ddot{o}$l watershed. Water samples were collected during the summer months between 2003 and 2005. Concentrations of $Cl^-$ ranged from 9.8 to $51.3\;{\mu}mol/L$; average nitrate concentrations were very low and ranged from undetectable to $1.1\;{\mu}mol/L$ and average ${SO_4}^{2-}$ concentration at sampling stations with minimal animal grazing ranged from 66 to $294\;{\mu}mol/L$. Average dissolved organic carbon (DOC) concentrations ranged from 642 to $1,180\;{\mu}mol$ C/L. We did not find statistically significant differences in DOC concentrations among the six streams, although DOC concentrations tended to be higher in the two northernmost streams, possibly related to differences in the active layer above the permafrost. Dissolved organic nitrogen (DON) concentrations were correlated with DOC concentration, and followed the same spatial pattern as those for DOC. In streams in this remote watershed, total dissolved nitrogen was made up of mostly organic N, as has been found for other regions distant from anthropogenic N sources. Overall, these results suggest that future research on the dynamics of DOC and DON in this watershed will be especially insightful in helping to understand how changes in climate and land use patterns will affect transformations, retention, and export of dissolved organic matter within these sub-watersheds in the Lake H$\ddot{o}$vsg$\ddot{o}$l region.

Biodegradation of Dissolved Organic Matter Derived from Animal Carcass Disposal Soils Using Soil Inhabited Bacteria (토양 서식 미생물을 이용한 가축사체 매몰지 토양유래 용존 유기물 분해)

  • Park, Jeong-Ann;Kang, Jin-Kyu;Kim, Jae-Hyun;Kim, Song-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.861-866
    • /
    • 2013
  • The aim of this study was to investigate the biodegradation of dissolved organic matter derived from animal carcass disposal soil using soil inhabited bacteria and to identify the bacteria involved in the biodegradation. The two soils were obtained from the animal carcass burial sites located in Anseong, Gyeonggi-do, Korea. The results indicated that during the biodegradation experiments (56 days), 48% of dissolved organic carbon (DOC) was mineralized within 13 days in soil-derived solution 1 (initial DOC = 19.88 mgC/L), and the DOC concentration at 56 days was $8.8{\pm}0.4$ mg C/L, indicating 56% mineralization of DOC. In soil-derived solution 2 (initial DOC = 19.80 mgC/L), DOC was mineralized drastically within 13 days, and the DOC concentration was decreased to $6.0{\pm}0.4$ mg C/L at 56 days (76% mineralization of DOC). Unlike DOC value, the specific UV absorbance ($SUVA_{254}$) value, an indicator of proportion of aromatic structures in total organic carbon, tended to increase until 21 days and then decreased thereafter. The $SUVA_{254}$ values in soil-derived solutions 1 and 2 were the highest at 21 days. The microbial analysis demonstrated that Pseudomonas fluorescens, Achromobacter xylosoxidans, Nocardioides simplex, Pseudomonas mandelii, Bosea sp. were detected at 14 days of incubation, whereas Pseudomonas veronii appeared as a dominant species at 56 days.

Quartz Dissolution by Irradiated Bacillus Subtilis (방사선을 조사(照射)한 Bacillus Subtilis에 의한 석영 용해)

  • Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.42 no.4
    • /
    • pp.335-342
    • /
    • 2009
  • The effects of bacterial lysis on the rate of quartz dissolution were investigated under pH 7 condition using Bacillus subtilis cells which were either irradiated or non-irradiated with gamma ray. The amount of dissolved organic carbon (DOC) which resulted from bacterial lysis increased in slurries of quartz and bacteria mixture over experimental period. Lysis of non-irradiated bacteria led to the elevated concentration of dissolved silicon when compared with abiotic control. Concomitant increase in the amounts of DOC and dissolved silicon over time indicated that lixiviation of silicon from quartz was due to bacterial lysis. Higher amounts of DOC and dissolved silicon were present in the irradiated bacterial slurries than those of non-irradiated bacteria. The enhancement of quartz dissolution in the irradiated bacterial slurries was likely attributed to disruption of organic molecules in the bacterial cells by gamma ray and formation of effective ligands for quartz dissolution. The results suggest that the effects of bacterial lysis on mineral weathering rate should be considered for prediction of time for released radionuclides to migrate to surface biosphere in high level radioactive waste disposal site.

The Fractionation Characteristics of Organic Matter in Pollution Sources and River (오염물질 배출원과 하천에서의 유기탄소 분포 특성)

  • Kim, Ho-Sub;Kim, Sang-Yong;Park, Jihyung;Han, Mideok
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.5
    • /
    • pp.580-586
    • /
    • 2017
  • The fractionation characteristics of organic matter were investigated in inflow and effluent of each other pollution sources and river. While the DOC/TOC ratio in the influent of public sewage treatment plant and livestock disposal facilities was above 0.58, the POC/TOC ratio of human livestock Night soil treatment plant and stormwater runoff was more than 0.7. The TOC removal efficiency of public sewage treatment plant and human livestock Night soil treatment plant were 88.5 % and 99.6 %, respectively. Although the concentration distribution of organic matter pollution most of total organic carbon (TOC) in effluent of pollution sources accounted for dissolved organic carbon (DOC) type (DOC/TOC ratio >0.89) and Refractory-DOC (RDOC)/TOC ratio was higher (>0.65). The fractionation characteristics of organic matter in river were similar with that of sewage treatment plant and TOC concentration showed the positive correlation with DOC ($r^2=0.93$) and RDOC ($r^2=0.89$) concentration. The decay rate of Labile DOC (LDOC) (avg. $0.128day^{-1}$) was higher than labile particulate organic carbon (LPOC) ($0.082day^{-1}$), while that of DOC ($0.008day^{-1}$) was lower than POC ($0.039day^{-1}$) (paired t-test, p < 0.001, n = 5). These study results suggested that it should consider important both TOC and DOC as the target indicator to control refractory organic matter in pollution sources.