• Title/Summary/Keyword: Dissociation dynamics

Search Result 41, Processing Time 0.024 seconds

Absorbtion Spectroscopy, Molecular Dynamics Calculations, and Multivariate Curve Resolution on the Phthalocyanine Aggregation

  • Ajloo, Davood;Ghadamgahi, Maryam;Shaheri, Freshte;Zarei, Kobra
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1440-1448
    • /
    • 2014
  • Co(II)-tetrasulfonated phthalocyanine (CoTSP) is known to be aggregated to dimer at high concentration levels in water. A study on the aggregation of CoTSP using multivariate curve resolution analysis of the visible absorbance spectra over a concentration range of 30, 40 and 50 ${\mu}M$ in the presence of dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), acetonitrile (AN) and ethanol (EtOH) in the concentration range of 0 to 3.57 M is conducted. A hard modeling-based multivariate curve resolution method was applied to determine the dissociation constants of the CoTSP aggregates at various temperatures ranging from 25, 45 and $65^{\circ}C$ and in the presence of various co-solvents. Dissociation constant for aggregation was increased and then decrease by temperature and concentration of phthalocyanine, respectively. Utilizing the vant Hoff relation, the enthalpy and entropy of the dissociation equilibriums were calculated. For the dissociation of both aggregates, the enthalpy and entropy changes were positive and negative, respectively. Molecular dynamics simulation of cosolvent effect on CoTSP aggregation was done to confirm spectroscopy results. Results of radial distribution function (RDF), root mean square deviation (RMSD) and distance curves confirmed more effect of polar solvent to decrease monomer formation.

Excursion, Roaming and Migration of Hydrogen Atom during Dissociation of Formaldehyde

  • Kim, Hyung-Rae
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1285-1293
    • /
    • 2014
  • Several interesting features in trajectory were observed in the direct dynamics study of formaldehyde dissociation above radical dissociation limit. The hydrogen atom deliberately placed on the radical dissociation path can turn around at some distance from C without completion of dissociation and return to HCO moiety, colliding with it just as in a radical-radical recombination and producing a highly energized molecule. Excursion of a hydrogen atom to a distance of 6-8 bohrs and migration of a hydrogen atom back and forth between C and O are two of the most interesting features exhibited by the energized molecule. A series of excursions is seen to lead to a different kind of dissociation resembling roaming-like dissociation characterized by high vibrational excitation of $H_2$ fragment. It is suggested that excursion occurs due to involvement of two different force field systems that exhibit discontinuity in 6-8 bohrs from HCO moiety. We argue that roaming is a non-zero impact parameter version of the excursion.

QM/MM-MD 방법을 이용한 용액 속에서의 Potassium Thiocyanate의 Association/Dissociation Dynamics 연구

  • Nam, Hye-Rim;Ghosh, ManikKumer;Choe, Cheol-Ho
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.347-358
    • /
    • 2014
  • 본 논문에서는 양자 역학적 분자 동역학(Quantum Mechanical/Molecular Mechanical-Molecular Dynamics, QM/MM-MD)을 통해 수용액에 녹아 있는 Potassium Thiocyanate의 dynamics를 연구했다. Umbrella sampling technique을 활용하여 association/dissociation에 해당하는 Free energy surface를 구했다. 두 개의 Free energy minimum이 녹아 있는 두 이온의 center of mass 사이의 거리가 $4{\AA}$일 때와 $5{\sim}6{\AA}$ 부근일 때 나타났으며 $4{\AA}$일 때 더 안정 했다. 본 논문에서는 $4{\AA}$일 때를 Contact Ion Pair(CIP) $6{\AA}$일 때를 Dissociation Ion Pair(DlP)라고 칭했다. 이 minimum들이 무엇인 지를 밝혀 내기 위해 추가 연구를 수행하였다. Free energy 상에서 가장 안정 할 때(CIP) solute인 Potassium thiocyanate의 구조를 살펴 봤더니 Potassium ion은 Thiocyanate ion의 Sulfur보다 Nitrogen side를 선호하였다. 그 원인을 알아보기 위해 salvation shell의 구조를 Radial distribution function을 통해 살펴 봤더니 물 분자가 Nitrogen보다 Sulfur와 더 강한 상호작용을 하고 있었다. 그로 인해 Potassium ion이 Nitrogen을 선호한단 결과가 나온 것이다. 한편, 두 번째 minimum은 물 분자가 Potassium 이온과 Thiocyanate 이온 사이에 flexible하게 bridging을 하는 구조였다. 또한 단순 양자 계산을 통해서도 비슷한 구조를 얻을 수 있었다. 그러나 QM 계산은 0K에서 수행하는 것이기 때문에 엔트로피 효과가 없는 계산이지만 본 연구는 온도 300K로 실제 용매와 가깝게 수행함으로써 고정되어 있는 구조가 아니라 엔트로피와 엔탈피가 균형적으로 존재하는 실제 용액 속에서의 구조를 처음으로 보여주는 것이다.

  • PDF

Effects of van der Waals Bonding on the Collisional Dissociation of a Highly Excited Chemical Bond

  • Yoo Hang Kim;Hyung Kyu Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.4
    • /
    • pp.397-403
    • /
    • 1991
  • Dissociation of a highly excited diatomic molecule in the Ar + Ar…$O_2$ and Ar + $O_2$ collisions is studied using trajectory dynamics procedures in the collision energy range of 0.050 to 1.0 eV. Between 0.050 and 0.2 eV, dissociation probabilities are very large for the complexed system compared to the uncomplexed system. This efficient dissociation of $O_2$ in Ar…$O_2$ is attributed to the ready flow of energy from the incident atom to the large-amplitude vibrational motion of the excited O2 via the van der Waals bond. Thermal-averaged dissociation probabilites of $O_2$ in Ar + Ar…$O_2$ near room temperature are nearly two orders of magnitude larger than those of $O_2$ in Ar + $O_2$.

An anomalous dissociation of protonated cluster ions of DNA guanine-cytosine base-pair

  • Seong, Yeon-Mi;Han, Sang-Yun;Jo, Sung-Chan;Oh, Han-Bin
    • Mass Spectrometry Letters
    • /
    • v.2 no.3
    • /
    • pp.73-75
    • /
    • 2011
  • In the collisionally-activated dissociation of the proton-bound cluster ions of DNA base guanine (G) and cytosine (C), $G{\bullet}{\bullet}H^+{\bullet}{\bullet}C$, the abundance of [$CH^+$] ions was found to be higher than that of [$GH^+$] despite the fact that G has a higher proton affinity than C. This unexpected observation seems to demonstrate another example that the simple kinetic method scheme does not work. We suggest that a kinetic factor or detailed dynamics governing the proton transfer and dissociation should be carefully considered in the applications of the kinetic method to the proton affinity measurements.

Photodissociation Dynamics of$H_2O_2$ at 280-290 nm

  • Baek, Seon Jong;Sin, Seung Geun;Park, Chan Ryang;Kim, Hong Rae
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.256-260
    • /
    • 1995
  • Laser induced fluorescence spectra of OH produced from photodissociation of $H_2O_2$ at 280-290 nm in the gas phase have been observed. By analyzing the Doppler profiles, the anisotropy parameter($\beta$ =-0.7) and the center of mass translational energy of the fragments have been measured. The measured energy distribution is well described by an impulsive model. The excited state leading to dissociation is found to be of 1Au symmetry. The dissociation from this state is prompt and direct with the fragment OH rotating in the plane perpendicular to the O-O bond axis.

Photodissociation Dynamics of tert-Butyl Isocyanide at 193 nm

  • Kang, Tae-Yeon;Shin, Seung-Keun;Kim, Hong-Lae
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1130-1132
    • /
    • 2004
  • Photodissociation dynamics of tert-butyl isocyanide at 193 nm has been investigated by measuring rotationally resolved laser induced fluorescence spectra of CN fragments that were exclusively produced in the ground electronic state. From the spectra, internal energies of CN and translational energy releases in the products were obtained. The dissociation takes place in the excited triplet states which are strongly repulsive along the dissociation coordinate via curve crossing from the initially prepared state.

Dynamics of Br(2Pj) Formation in the Photodissociation of Bromobenzene

  • Paul, Dababrata;Kim, Hyun-Kook;Hong, Ki-Ryong;Kim, Tae-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.659-663
    • /
    • 2011
  • The photodissociation dynamics of bromobenzene near 234 nm has been investigated using a two-dimensional photofragment ion-imaging technique coupled with a state-selective [2+1] resonance-enhanced multiphoton ionization (REMPI) scheme. The nascent Br atoms are produced by the primary C-Br bond dissociation, which leads to the formation of $C_6H_5$ ($\tilde{X}$) and Br($^2P_j$, j = 1/2, 3/2). The observed translational energy distributions have been fitted by a single Boltzmann function and two Gaussian functions. Trimodal translational energy distributions of Br($^2P_j$) have been assigned to the direct/indirect dissociation mechanisms originating from the initially excited $^3({\pi},{\pi}^*)$ state. The assignments have been confirmed by the recoil anisotropy and distribution width corresponding to the individual components.

First-principles study of dissociation processes of O2 molecular on the Al (111) surface

  • Sun, Shiyang;Xu, Pingping;Ren, Yuan;Tan, Xin;Li, Geyang
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1528-1533
    • /
    • 2018
  • The trajectories of adsorption and dissociation process of $O_2$ on the Al (111) surface were studied by the spinpolarized ab initio molecular dynamics method, and the adsorption activation energy was clarified by the NEB method with hybrid functionals. Three typical dissociation trajectories were found through simulation of $O_2$ molecule at different initial positions. When vertically approaches to the Al surface, the $O_2$ molecule tends to rotate, and the activation energy is 0.66eV. If $O_2$ molecule does not rotate, the activation energy will increase to 1.43 eV, and it makes the O atom enter the Al sublayer eventually. When the $O_2$ molecules parallel approach to the Al surface, there is no activation energy, due to the huge energy released during the adsorption process.